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ot Statistics of Random Fields 't
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* Theory of generation of perturbations is quantum mechanical (eg quantum
mechanics during inflation) = limited to predicting the statistical properties of the
fluctuations (such as the matter overdensities 6p)

e Mean values (denoted e.g. <5p>) represent quantum expectation values

* Inflation automatically provides ‘decoherence’, i.e. produces essentially
classical fluctuations = can interpret expectation values as over a classical
ensemble of universes

* Will consider random fields in three-dimensional Euclidean space (i.e. restrict to
flat (K=0) universes) and in two dimensions on the sphere

* To keep the Fourier analysis simple
* ‘Fourier’ analysis more complicated in non-flat models
* We denote comoving spatial positions by x
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e Consider real random scalar field f(x) in flat space with mean zero:
ie at each point f(x) is some random number with zero mean

(f(z)) =0

— Probability of getting f () is functional Pr|f(x)]

e Convenient to expand in eigenfunctions of V 2 to make translational properties

manifest:
f(x) 2/%f(k)eik‘” L f(k) zfﬁf@)e—ikw

— Consider (actively) translating field by a: f(x) — Taf = f(x — a) so

that
Taftk) = [ =22
af(k) = Wf(w—a)e
e Could also rotate field about origin with R: f(x) — Rf(x) = f(R™'a) so
that

—ik-x _ f(k)e—ik-a

Rf(k) = [ (2‘;% R )R T = f(R k)

e Demand that statistical properties of fluctuations respect the FRW symmetries
@QOW%QQ—EY and ISOtrOpy ’Vth INPE Advance Course in Astrophysics, INPE, September 2013
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THE POWER SPECTRUM Path Integral over all field
configurations

Ex,y) = (fx)f(y)) = /'Df Pr(f]f(x)f(y).

e Consider two-point statistics in Fourier space

— If ensemble is statistically homogeneous, must have —> Pr[f(x)]= Pr[f“a f(x)]

(Taf (k) Taf(k)]) = (k) f* (K BHRIE = (k) *(K)) Va
so (f(k)f*(k")) = F(k)dp(k — k") —> different Fourier modes are uncorrelated

— If ensemble also statistically isotropic —> Pr[f(x)]= Pr[IAQf (x)]
(Rf(R)[Rf(EN*) = (fF(RT'K)f*(RT'K')) = F(R™'k)op(k — k)
must equal F'(k)dp(k — k') forall R, i.e. (k) = F(k) where k = |k| \

e Define power spectrum of homogeneous, isotropic process by 5, (R

S ) = 25

(prefactor is convenient, but many different conventions exist)

“'k) = det RS(k) = 6(k)
Pr(k)op(k — k')
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THE POWER SPECTRUM I Path Integral over all field
configurations

e Consider two-point statistics in Fourier space  £(x.y) = (f(x)f(y)) = /'Df Pr(f]f(x)f(y),

— If ensemble is statistically homogeneous, must have

T . o ‘ —i(k—k/)-a _ * 1./
( g(x,y)=&(x—a,y—a) Va )¢ (f(k)f*(K)) Va
e N A —_ s * 2-point correlator only depends on the
s &xy)=E&x—-Y), separation of the 2 points
— If ensemble also statistically isotropic *  2-point correlator depends only on
_—7 the distance between the 2 points

. N 1 o)
E(X}) = f, (R (X .V)) VR R_lk/)> _ F(R_lk)(sD(k . k/>

= &xy)=&(x—yl),
must equal ' (K)op(k — K )1or an ni, i.e. F'(k) = F'(k) where k = |k

e Define power spectrum of homogeneous, isotropic process by

(FRV 7 () = 5 Py(k)on(k — k)

(prefactor is convenient, but many different conventions exist)

- 4 - _
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TWO-POINT CORRELATION FUNCTIONS I

e Auto-correlation function of f(a) in real space is the two-point correlation

function
Er(a,2') = (f (=) f ()
— Since (f(x)) = 0, £ measures excess over (Poisson) case where f

independent at every point

e Inserting Fourier expansions gives

, Bk 272 b dk | ,
(@) = [ s e PR R @) = [Py (ysinc(hla )

— Fourier transform of power spectrum

— Only depends on | — &’| as required by statistical homogeneity and

isotropy
The variance of the fieldis &£(0) = fa’lnka(k)

Scale invariant means P (k)=const., and its variance receives equal
contribution from eyery decade in k
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TWO-POINT CORRELATION FUNCTIONS I

e Auto-correlation function of f(a) in real space is the two-point correlation

function
| M P A N /r/’m\ f(a:’)) k.(x—y)=k‘x—y‘u
V=) = / (2m)3/2 (2m)3/2 Sf('k){:(k,}z e er (Poisson) case where f
22 P, (k)5(k—k’) 1
- % %’Pf(k) /koe‘k'("—Y'J_ 27 ./—1 dp e**YIE — Axjo(klx — y|).,

, Bk 272 b dk | ,
(@) = [ s e PR R @) = [Py (ysinc(hla )

— Fourier transform of power spectrum

— Only depends on | — &’| as required by statistical homogeneity and

isotropy
The variance of the field is £(0) = f dInkP, (k)

Scale invariant means P (k)=const., and its variance receives equal
contribution from eyery decade in k
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e For a Gausssian process, Pr|f(x)] is a Gaussian functional of f(x)

e Since f(k) islinearin f(x), Pr[f(k)] also Gaussian

e Simplifies discussion if consider periodic fields in box volume V': k takes
discrete values with lattice volume (27)° /V soif f(x) = > . fkeik':’3

2m)3 / % 4

— Follows that <fkf;;,> = (2‘7;)3 Z;gﬂ@ 0L’

e For a homogeneous, isotropic Gaussian process, real and imaginary parts, a g,
and b Lo Of fk are Gaussian independent variables:

—(ag,+b7.)/21% (k) 3
e : (2m)° Py(k)
R | e e AL
k
— Reality of f(x) — f(k) = f*(;-k) so only half variables (linearly)

independent
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e Changing variables to 7'z, and ¢, st. f1. = Tkewk,

1 7T —r3 /247 (k)
Pr(rk,gbk):%MQ(k)e k

so amplitudes and phases independent with ¢, uniform on [0, 2]
e Returning to probability functional for f(a) have

2
k l -+ constant

_ I M
In Pr[f ()] = 2%%%)

= Using | 1|2 = V2 [ d3ad3y f(x) f(y)eF @Y taking V — o
find

InPr|f(x)] = —% /d3:cd3y f(w)ffl(a:,y)f(y) + constant

— Inverse correlation function s.t. .
J & yér(x —y)é; (y —2') = dp(x — a'):;

_ 9 Bk 2P\ T ke
- sf1<w,y>=_[(%)3( 2, ) k@Y

'Vth INPE Advance Course in Astrophysics, INPE, September 2013
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nck-g Three-point function in Fourier space is bispectrum

—
o

— Statistical homogeneity demands

(f(k1)f(k2)f(k3)) = 0p (k1 + ko + k3)F(k1, k2, k3)

with F'(k1, k2, k3) permutation symmetric

— Statistical isotropy and parity invariance (r — —x) demands that F’

depends only on lengths of sides:

(f(k1)f(k2)f(ks)) = 0p (k1 + ko + k3)Bj(ki, k2, k3)

e For (zero-mean) Gaussian processes bispectrum (and all odd n-point functions)

vanishes

e More generally 2n-point functions of (zero-mean) Gaussian fields satisfy Wicks
theorem: e.g. : :
Sum of means of all possible pairs

(f(k1)f(R2)f(k3)f(ka)) = (f () f(K2))(f(k3) [ (k1))
+ (f (k1) f(R3)) (f(R2) f(ka)) + (f (K1) f(ka))(f(k2)f(K3))

- ’ _ v
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‘ RANDOM FIELDS ON THE SPHERE I

e For a random field f(71) on the sphere expand in spherical harmonics Y., (1)
F@) =" fimYim(n)
Im

— Eigenfunctions of spherical Laplacian V2 and (9¢: (with h = 1)
LY = —V?Yi = 11 + 1)Yim,
L. = —i04Yim = mYin,
with [ integer > 0 and m integer with |m/| < [

— Orthonormal over sphere:

dn Y (n)Y V(1) = 61 0mm: A prAvoE A
/ (tm) fon = [dRf@Y},(R)
— Use phase convention s.t. Y;* = (—1)™Y] _,, so that Solarial ruliivale aeelieris

fi = (=1)™f; _,, for real fields

- AT - v - i e -
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e Rotation D fully specified by three Euler angles, {a, B,7}:

— Rotate by v about 2z then (3 about y then o about 2
e Since ¢-dependence of Y}, is e!™¢
D(0,0,9)Yim = e~ ™Yy, = e 5y,

— L, is generator of rotations about z-axis, so

D(O&, 67 7)Y2m _ e—iaLze—iﬁLye—i’yLz Hm

e Since .2 commutes with jLZ
A l
DYim = Y Dy Yim
m/
— Extract Dfn,m using orthonormality:

. = Nt . 7 . / Ny
Din _—— /dn Ylﬂ;n/e—zaLze—zﬂLy&—z'yLzYlm — g~ im a/dn Y*l*mle zﬁLleme imn

4

A&

Vv
l
d ;. (B)
- AT - v s v w e ’ - __
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e Consider two point statistic in multipole space: (flmf(*lm),>

— Demand invariance under rotations of f(7) for which

fin = Dfin = 3 fons [ AV DYoo = 3 Dl i

m/’

e Key result we require follows from unitarity of D:

DiD=1 = / df [DYim]* DY = Sy = > Dy Dl = S
M

e Follows that if

<flmf(*lm)’> — Z Dfn ’M’<fle(lM) >

MM’
must have
sk
(Sim T (imy ) = 0w Omms C
— Defines spherical power spectrum ()
16
'Vth INPE Advance Course in Astrophysics, INPE, September 2013
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e Consider two point statistic in multipole space: (flmf(*lm),>
— Demand invariance under rotations of f(7) for which

fin = Dfin = 3 fons [ AV DYoo = 3 Dl i

m

e Key result we require follows from unitarity of D:
N e * T _ 1% l _
DiD=1 = / I WV D0 = Bt = > DDt = Bt
M

For rotation through v about the 2-axis,

e Follows that if o o
)'[m(0~ @' — )'lm':0~o - .'v)

e "™ Yim(0,9) = fim — €7 fim .

Under rotations,

. S y 1
':.f‘mfl.'m'.:' — e "MTe™m 7-1|flmf(.'m',,' '

so invariance requires the correlator be o dmm-.

must have
sk
Fim S (imy ) = O Ormms C
— Defines spherical power spectrum ()
16
'Vth INPE Advance Course in Astrophysics, INPE, September 2013 15
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planck=——
e Two-point auto-correlation function on sphere is angular correlation function

Z <flmf(*lm/)>lem( )Yv(lm)’ Yclyylm lem A/)

(Im)(Im’)
— Sum over m simplifies with addition theorem (rotationally-invariant so can

(f(R)f(R)) =

evaluate with 12 at north pole):

S Vi ()Y (7)) = ZEL Py (12 - )

— Correlation function depends only on angle 7 between 72 and 1" as

required:

Er() = (f(R)f() = ) ZELCIPi(cos )

— Can invert using orthogonality of Legendrle polynomials:

Ci =2 [ geos s (W) Pilcos)

> (21 + 1)C; /47 has power per decade ™ I°Cy /27

_ v

e Mean square of field £ £ (0) = >,
16
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e Consider real field f(x, n) in a flat universe

e Observer at x = 0, = 1 integrates f along the line of sight 72 to obtain

projection
f(n) = /dxf(xﬁ,no — X)
- Foulrcier expansion and Rayleigh ) f, = fdﬁf(ﬁ)Y?m(ﬁ)
eXR T — 4 N ik (kX)) Yie (R) Y7 (K) give Orthogonality of  Y},,

m = 4mit | dx / i I§/2 k,no — x)ji(kx) Y, (k)
- since (f(k,n)f(K',n")) = (272 /k*)Ps(k;n,m)op(k — k'), have

Sy ) =SS A [ dx [ ' [ 4Py (i = xm = X Vi)

aV

i

— Statistical homogeneity and isotrqpy of f(x,7) ensures f(7) statistically
isotropic

- AT - v - W - w - ’ _ v
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plancq- PROJECTIONS ALONG THE LINE OF SIGHT I1: LIMBER APPROXIMATION I

e Spherical Bessel functions j; (k) arise from intersection of plane wave with

sphere of comoving radius x
— For large [, j;(kx) peaks sharply at ky ~ [
— For smooth P¢(k;n,n')/k?, can approximate

/ d,f Pr(k;n,n' ) ji(kx)ji(kx') ~ i (kk;? 1)

/ i R
kx=I _

N~

72 90 (x=x)

e Power spectrum C’lf Limber approximates to

2
Cf ~ 2= | dxxPs(l/x;m0 — X: 10 = X)

— Equivalent to assuming mapping between [ and k so sharp that get no

correlations between contributions to projection from different redshifts
22
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e Microwave background almost perfect

blackbody radiation
— Temperature (COBE-FIRAS) 2.728 K

AT = 3.353 mK

e Dipole anisotropy AT /T = f3cos6 im-
plies solar-system barycenter has velocity
v/c B = 0.00123 relative to ‘rest-

frame’ of CMB
10— w \ ‘ ‘ ;
e Variance of intrinsic fluctuations first de- - % Planck
£ 5 WMAP9
tected by COBE-DMR: (AT'/T — oy [ AT
' A RN g
16K smoothed on 7° scale 10 Lﬂi
Y i
e Anisotropy now detected up to [ of few thou- = Y,
P ) ,
a\;‘{o\]\l

A - 2100 500 1000 1500 2000 2500 3000
- a4 @ - v MI-IL — — g_________
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e Work in conformal Newtonian gauge in this lecture and next: ¥ and ¢ are scalar functions of 7 and = *;

ds® = a’(n)[(1 + 2¢)dn” — (1 = 2¢)v;;dz"da’]

e Using conformal time d7j = dt/a and comoving coordinates T

® <y;; metric for space of constant curvature; in spherical coordinates X, 8, o:

e Introduce frame of vectors:
yiidzidz? = dx? + sin% x(d6? + sin? 6d¢?)

(Bo)* =a (1 —)dt , (B)*=a 1+ )i
defined so that (Ey)*(Ep), = 1 and (E;)*(E;)s = —7ij
e Decompose photon momentum into energy [seen by observer with u® = (EO)“] E and

direction e (e“u, = 0):

p* = E(u® + e%)
— Decompose € onto spatial triad { (F;)%}: e® = e*(E;)?
ele,=—1 = vijeiej =1

— Photon 4-momentum then parameterised in transparent way:

P =a B[l -1, (1+ d)e’]

o - v

'Vth INPE Advance Course in Astrophysics, INPE, September 2013
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e Photons move on geodesics of perturbed spacetime:

dp" [d\ + T p"p’ =0

where \ is affine parameter with dx® /d\ = p*
o Withp# = a L E[(1 — %), (1 + ¢)e!] find
d(aE)/dn = —aEdp/dn + aE (i) + ¢)
de' [dn + et IT5y = (779 —e'e))Dj (4 — ¢) — (¢ + ¥)ele Ty

where D; is covariant derivative from Yij

(overdot = J/0,,):

— In background have a E© = const. — usual redshift modified by variation of

gravitational potentials

— Derivative dt)/dn is along path of photon
— Departure of de’ / dn + e’ ek(g)F§ .. from zero describes gravitational lensing

- AT - v iy v w ey ’ - __
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TEMPERATURE ANISOTROPIES | I Fin L(@I
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e Integrate d(aFE')/dn from point A on last scattering surface to observation point R:

B +/ (6 + &) dn

A

lnaFE)j

e Total redshift of photon from Ato Fis 1+ z = F4/ER:
R

Lo = 2 (Mfi/ <¢+q's>dn> ~ 2 <1+[¢]§/A (¢+a5)dn>

aA A

e Assume radiation isotropic with temperature 1’4 at A in frame moving with coordinate
velocity V,f — Doppler shifting to zero-shear frame gives required temperature at A:

TA(l + GZV,;’>

e CMB temperature at R in direction e’ is then

TR(ei) = TA(l + eiV,yi)A/(l + Z)

- AT - v 3 A v w e 4 - __
'Vth INPE Advance Course in Astrophysics, INPE, September 2013
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e CMB temperature at R in direction e’ evaluates to

R
ﬂﬁﬂzzggTAG+@Vﬂr{M§+/(¢+@m0

e Simplify by noting T* x P~ in frame where isotropic:

— Since p frame-invariant in linear theory have
Th=Ta(l+26,)

— Buta ATA / aR = TR SO gauge-dependent temperature fluctuation
O(n') = [Tr(—n') — Tr|/Tr becomes

iy _ L i to
O') = 16,4+ eiVila+vla+ [ (+d)dy

— Have dropped monopole term )i since only contributes to gauge-dependent part of

temperature fluctuation (angular variation is gauge-invariant)

- 4 _ v

3 A v w
'Vth INPE Advance Course in Astrophysics, INPE, September 2013
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planck=——
e For flat universe extraction of the multipoles a;,,, of ©(n ) follows example in Lecture

— Fourier expand fluctuations and note k - 4 = n - k(1 — 1, ) with 1), last scattering

— For Doppler term need (with An =10 — 1)

Vila= =i [ -2 kv (k
€; 'y|A__2 (27T)3/2n ’Y( )6

i’fl,-’{iAn — _ d

>k Ak
Vo(k M-KAn
dAn/ (k)e

(2n)3z

e Multipoles given by

“m =t o
with  ©;(k)R(k,0) = (2 + 1){[50, (K, n:) + (K, 0. )] (kAn)

— KV (k) jikAn) + [+ )0k ik — )]}

%

=il /(2%]36/2 O,(k)R(k,0)Y; (k)

{R(0,K)R(0,K)")

e Power spectrum evaluates to

C;=4n / dIn k Pr (k)O3 (k) 252 Pr (k)5 (k—K)

- AT - v 3 A v w e 4 - __
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e On large scales more convenient to express id’v + 2 in terms of (5,y in comoving gauge

— Under (scalar) gauge transformation 7 — 77 + 71" and 2* — * + DL total matter
velocity V' and metric fluctuation B transform to
V=V+L , B=B+T-1L
— In comoving gauge V' = 0 and metric fluctuation B = 0 — reach from CNG with
T=-V and L=-V
— Density fluctuations transform as § — d — T'p/p so in comoving gauge
o, =16, -VH

e In CNG, Einstein field equations give ¢ + H1 = —1ka?(p+p)V so

—(57‘|‘¢:_’Y_ 2 ’ +¢( p/p)
1 47 ka*(p+p)  3(1+p/p)
- - - T ’th:INF:E Advance Course in Astrophysics, 'LPE' Septe'mber RO
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planck=——
e |f matter dominates radiation at last scattering ¢ ~ ) and gb/?—[ < ¢ temperature

anisotropy reduces to

R
@(ﬁl)=%¢‘A+%(5V|A+€@'V;’A+2/ ¢ dn
A

— ISW term receives only late-time contribution as A becomes dominant

e CNG field equations give (D* + 3K )¢ ~ %7—[25

— For adiabatic initial perturbations 5,7 ~ 0 s0 5,7 ~ k?¢/H?

— Show later that on large scales eiV,yi ~ ko/H N X
2, o
/0 i (@) de = gy

e On large scales Sachs-Wolfe and ISW dominate

e Power spectrum of Sachs-Wolfe part on large scales for scale-invariant P (k) = const.:

JP 2
o=y || Jamiitwan = i
where have used conservation of R on large scales and R = 5¢/3 in matter domination

Graga Rocha CMB - lecture 2
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e Bessel functions in ©;(k) describe projection between angular scale [ and linear scale k

at last scattering
— j1(kAn) peaks when kAn = [ but for given [ considerable power from k > [/ An

also (wavefronts perpendicular to line of sight)

kAn >

kAn = 1

e Acoustic oscillations in the photon-baryon fluid on sub-(sound) horizon scales have
k-dependent frequency so phase of oscillation at 7, is k-dependent

— Expect modulation in Cs on sub-degree scales where k is inside sound horizon

- AT - v iy v w ey ’ - __
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planck=——
e Before recombination Thomson scattering keeps photons isotropic in frame of baryons

V., =V}, and preserves adiabaticity 6., = 44;/3
— Coupled photon-baryon system behaves almost like ideal fluid: (where R = Spb/4p7)

0p = py0y + puds = pr0y(L+ R) , 0p = gpy0,

e CNG continuity and momentum equations for ideal fluid:

Ondp + (p+p)D*V + 3[(6p + 6p)H — (p+p)p] = 0

. 5
ViV + L vigp+ L =0
p+p p+p

— Applied to interacting photon-baryon fluid find
‘ 4 12 o ‘ R 1 _
57+§DV7—4¢—0 : V7+1_|__R%V'y+m5'y+¢—0

e On super-Hubble scales (for adiabatic fluctuations) ¢ ~ const. and (.5,y ~ 3’-[(57 and

V, ~HV, so
Hy ~ 2KV, = HV, ~tp so eV ~kVy ~ kY /H < 1

= o= - -
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e Combine continuity and momentum equations to get

HR 25 — AHR | | 42
5 + 1+R5 (1+R)D 4¢+ 1+R¢+ §D »
— Sound speed ¢? = %(1 + R) ! reduced by baryon inertia

e Neglecting baryons (R ~ 0) and evolution of potentials have approximate solution
L6,(n) + ¥ (n) = [+6,(0) + ¥ ()] cos(kn/V/3) + Y24, (0) sin(kn/V/3)

e Super-Hubble adiabatic fluctuations have

8, & —21p = 0,(0) = 0

e Photon velocity follows from continuity : 4><\ %P
equation o-. e bttt F—t— -t

e Extrema of cosine oscillation when [ g Ak j N
k| codn =n al h _
Jo s dn 7T S ]

0.5
(=2
N
Ny
+_
<]
—
E—
|

1073 0.01 0.1

k/ Mpc~!
- B = i T SN - L v - ey _ - __
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SUMMARY ,:iA,M L@

planck=—— - - . - -

o

Y~
(2
)

\

e Redshift effects (Sachs-Wolfe and ISW) dominate on large scales

e Intrinsic temperature fluctuation

dominant source of acoustic
peaks, but minima filled in by [ 8., /4+y

dipole

0.15
L} I L}
|

— Early ISW (due to residual ra- °

diation density at last scatter-

l(1+1)C
1

ing) important contribution to

first acoustic peak

0.05

e Simple photon-baryon fluid model

inadequate on small scales (Lec-

- AT - v w1 - w = 4 - v
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b Planck Power Spectra (TT)
planck == ———— : e

Angular scale
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