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Play it SAM: K-band Constrained

K-band errors should be diagonal.

The faint end completeness is not well understood so we [Eren®
It with an additional parameter and then marginalize over it

Again we can fit the data and find other SAMs in some of the
posterior modes.

Some differences with the stellar mass function constaainierence.

0 Now only the mode witiMcc about 182 and fpr about one is
allowed.

0 Allowed ranges of3isp andBry have also changed.
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Making predictions

Use the whole posterior to make predictions of other ob$dega

Can use Posterior Predictive Check (PPC) using Principragoment
Analysis (PCA) to statistically look for consistency witietdata and
the predictions.

A lack of fit does not necessarily mean the model cannot fit dath
sets.

0 Need to do an inference using both data sets as constraints.
0 Then use PPC to check for the goodness of fit to both data sets.
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Predicted HI Mass Function
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m Too high everywhere,
[0  Turn down at small masses owes to mass resolution effects.

m Perhaps need to include preheating.
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s Amplitude and shape are both wrong.

9 10 11

m Predictions can vary in the allowed parameter range.
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Sometimes it Is bimodal, often it is not.

Predictions can vary in the allowed parameter range.
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Redshift
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Shape Is wrong.

Does better if one uses a cooling model that explicitly ideksicold
mode accretion.
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Predicted Stellar Mass Density Evolution
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Predicted Cold Gas M ass Density Evolution
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A New Approach

m  How does one learn about galaxy formation within the LCDM
paradigm?
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A New Approach

How does one learn about galaxy formation within the LCDM
paradigm?

Usual approach using Hydro simulations or SAMSs.

[0 Make ab initio models of galaxy formation including all the
physical processes that one thinks are important.

[0 Make predictions from these models and compare them with
observations.

0 Change the model to improve any deficiencies.
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The Approach

m  Ourapproach.
1 Start with the observations.

[0 See In general terms what the observatiatgiireof the galaxy
formation models.

0 Put this on a firm statistical footing using Bayesian Infen
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The Approach

Our approach.
1 Start with the observations.

[0 See In general terms what the observatiatgiireof the galaxy
formation models.

0 Put this on a firm statistical footing using Bayesian Infen

Similar in flavor to models by Behroozi et al 2012, Moster e2@1.3,
Yang et al 2013, & Bethermin et al 2013 but improved.

0 We follow galaxies from one time to another instead of just
matching abundances at different times.

0 We increase the complexity of the model as required by the dat
assessed using Bayes ratios.
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A Simple SAM

m Use dark halo merger trees.

m  Subsume most baryonic physics by assuming for central galax

M, = M, (Myir(2), 2).

m  Assume star formation in satellite galaxies is quenchedrsptially
with a timescale that depends on the stellar mass (two free
parameters).

m Galaxy mergers and stripping are treated as in other SAMs ffee
parameter).
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A Simple Modedl for the Central Galaxy SFR

- faMyir 32 o (XHRN\P /X Y
L = Do (2 (2 )
N T A e o B Sy

E 1s an overall efficiency.
fg IS the cosmic baryon mass fraction (fixed).

To IS a present dynamic timescale of the halos (fixed).
1 To= 1/(1OH0).

Two characteristic massellt; (X = Myjr /M¢) and R Mc with R < 1.

The two masses divide 3 power laws with slopeg, andy:

v (ME - if Myir > Mg
VIr

(MBI Me > My > R Me

M, [

10
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Modi Operandi

Use Bayesian Inference to determine the Posterior Digtobwf the
parameters given the constraining data.

Use one of three observational data sets as constraints:
0 1. Thez= 0 galaxy stellar mass function (Baldry et al 2012).

0 2. Above plusthe=1.15,z= 2.5, andz= 4.0 galaxy stellar
mass functions.

0 3. Above plus the low redshift cluster galaxy luminosity fuoat
(Popesso et al 2006).

Increase the complexity of the model by allowing some patarmdo
be redshift dependent.

Use Bayes Ratios to decide whether or not the observatiojusee
the increased complexity.
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m All parameters are redshift independent.
m Usez= 0 galaxy stellar mass function as data constraint (Data 1).
m Matches az = 0 but gets the massive end wrong at higher redshifts.

m Fit using only a nine parameter model.
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m All parameters are still redshift independent.
m  Use GSMFs from four redshifts as data constraints (Data 2).
m  \Worse az= 0 and now misses the massive end at all redshifts.

m  Needthe SFR at the massive end to be redshift dependent.
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= Allow a to be redshift dependent: = ag(1+2)* .

m  Use GSMFs from four redshifts as data constraints (Data 2).
m  Matches at all redshifts.

m Preferred over Model | by over $9to one!
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Model I1: SFRs
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m The star formation rate peaks at around?t0 M.
= Inlow mass halos SFR increases with halo mass &%:>.
= For high mass halos SFR increaseghs z)2°.

m For low mass halos SFR increaseg hs z)1>.
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Model Il constrained by Data 2 fails to match the cluster gjala
luminosity function data.
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Even when the cluster data is added as a constraint (DatacgleN
fails to match the cluster galaxy luminosity function data.
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Model I11: Requirements

m Dwarf galaxies in clusters formed at high redshift and thesreted.
s Need to affect the formation of dwarfs at high redshift.
m  Allow yto be redshift dependent:

y

Ya Ifz< z.

z+1

Y=+« Y |
\(Va Vb)(zc+1) +Yp otherwise

0 Introduced a critical redshift;, where the slope changes.

Brazil 23 /34



Model [11
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m Use all the observations as data constraints (Data 3).

m Matches all the constraining data.

m Preferred over Model Il by over 10to one!
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Model [11
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m Use all the observations as data constraints (Data 3).

m Matches all the constraining data.

m Preferred over Model Il by over 10to one!

m  Adding more complexity does not statistically improve the fi
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Mode Ill: SFRs
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m The SFRs for haloy 10'2h~—tM,, are the same as in Model II.

m For lower mass halos star formation is less efficient bedow 2.

0 Could owe to some IGM preheating process that occurs-a2,
e.g. supernova heating, blasar heating, or pancake heating
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The most massive galaxies form most of their stas>at.
Milky Way’s have an almost constant SFR after 1.

Unlike Model Il, Model Ill has a bimodal star formation hisydor
dwarfs with> 60% of their stars formed g/~ 2

0 The predicted old stellar population is observed in stant&au
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m Theresults for Model Il are similar to past work.
m  Above~ 10%h~IM, the stellar mass to halo mass ratio drops.

m In Model lll, as one goes to higher redshifts the stellar magslo
mass ratio becomes almost constart0**h—iM..
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Assembly History

My, M(II/111)
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Model Ill: massive and dwarf
galaxies have similar assembly
histories.

Model II: Dwarfs assemble like
Milky Way galaxies.
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m  Model lll: massive and dwarf
galaxies have similar assembly
histories.

Assembly History

m  Model Il: Dwarfs assemble like
Milky Way galaxies.

My, M(II/111)

— 5x10%, 3.2/2.5x101?7
— 10*2 2.5/2.8x10%°
3x101°, 4.2/3.2x10°
[ [

0.2 0.4 0.6 0.8
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m  Progenitor Milky Way galaxies have only assembled a few garof
their stellar mass by = 2 but 25% of their dark halo mass.

0 To observe Milky Way progenitors at> 2 requires observing
galaxies with stellar masses10°h—1M...
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Galaxy Assembly vs. Star Formation
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Massive and dwarf galaxies form half their stars before2.

Intermediate mass galaxies, e.g. the Milky Way, do not foath their
stars untilz < 1.

Galaxy assembly follows star formation except by > 10*h—*M..
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SFRD / M_yr '"Mpc™

Brazil

SFRD / M_yr '*Mpc™

Model Il predicts a cosmic SFR that dropszat 3 while Model
predicts it remains almost constant.

Both models predict- 10'% halos dominate star formation ak 3.

Model lll: Ever decreasing halo masses dominate:at3.
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In halos> 10'%°h—1M_, galaxies
only ever contribute< 10% to the
cosmic star formation rate.
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= Inhalos> 10'%°h—M_, galaxies
only ever contribute< 10% to the
cosmic star formation rate.

m  Using their inferred SFRs, Submm galaxies are claimed téribone

1/3 to 1/2 of the cosmic SFR.

m The clustering strength of submm galaxies implies that Hreyin

massive halos.
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= Inhalos> 10'%°h—M_, galaxies
only ever contribute< 10% to the
cosmic star formation rate.

m  Using their inferred SFRs, Submm galaxies are claimed téribone
1/3 to 1/2 of the cosmic SFR.

m The clustering strength of submm galaxies implies that Hreyin
massive halos.

0 = The star formation rates of submm galaxies must be
overestimated.
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Conclusions

m  We investigated what aspects of galaxy formationracpiiredby the
observed galaxy stellar mass functionzat0,1.15,2.5 & 4.0 and
the low redshift galaxy luminosity functions in clusters.
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= High mass halosX 10'2h—1M.) must have more efficient star
formation at higher redshifts.

0 Perhaps owing to the filamentary cold mode accretion seen in
many simulations.
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Conclusions

m  We investigated what aspects of galaxy formationracpiiredby the
observed galaxy stellar mass functionzat0,1.15,2.5 & 4.0 and
the low redshift galaxy luminosity functions in clusters.

= High mass halosX 10'2h—1M.) must have more efficient star
formation at higher redshifts.

0 Perhaps owing to the filamentary cold mode accretion seen in
many simulations.

m  Low mass halos<{ 10'th—tM) must have less efficient star
formation belowz ~ 2.

0 Perhaps owing to a preheating process that occurs-&.

0 e.g. supernova heating, blasar heating, or pancake heating
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=, Conclusions

. Progenitor Milky Way galaxies have only assembled a few ¢x@rof
their stellar mass by = 2 but 25% of their dark halo mass.

0 Galaxy formation has to be delayed relative to dark halo
formation perhaps owing to galactic wind recycling.

0 To observe Milky Way progenitors at> 2 requires observing
galaxies with stellar masses10°h~'M., something that is very
difficult in present surveys.
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Conclusions

7

Prbgenitor Milky Way galaxies have only assembled a few grarof

their stellar mass by = 2 but 25% of their dark halo mass.

0 Galaxy formation has to be delayed relative to dark halo
formation perhaps owing to galactic wind recycling.

0 To observe Milky Way progenitors at> 2 requires observing
galaxies with stellar masses10°h~'M., something that is very
difficult in present surveys.

Dwarf galaxies formed- 60% of their stars by = 2 regardless of
morphological type but many continue forming stars today.

0 Consistent with the ages inferred from observed star counts

Massive galaxies form most of their starzat 3 but half of their final
mass is assembled ak 2.

0 Massive galaxies assemble through merging.
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Conclusions

m Galaxies in halos- 10*%°h—IM, contribute very little to the global
star formation of the Universe at> 2 in apparent contradiction to
their large inferred SFRs.
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