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Play it SAM: K-band Constrained

Brazil 2 / 34

■ K-band errors should be diagonal.

■ The faint end completeness is not well understood so we parametrize
it with an additional parameter and then marginalize over it.

■ Again we can fit the data and find other SAMs in some of the
posterior modes.

■ Some differences with the stellar mass function constrained inference.

◆ Now only the mode withMCC about 1012 and fDF about one is
allowed.

◆ Allowed ranges ofβSF andβRH have also changed.



SAM: K-band Constrained
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Making predictions
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■ Use the whole posterior to make predictions of other observables.

■ Can use Posterior Predictive Check (PPC) using Principle Component
Analysis (PCA) to statistically look for consistency with the data and
the predictions.

■ A lack of fit does not necessarily mean the model cannot fit bothdata
sets.

◆ Need to do an inference using both data sets as constraints.

◆ Then use PPC to check for the goodness of fit to both data sets.



Predicted HI Mass Function
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■ Too high everywhere,

◆ Turn down at small masses owes to mass resolution effects.

■ Perhaps need to include preheating.



Predicted Tully-Fisher Relation

Brazil 6 / 34

■ Amplitude and shape are both wrong.

■ Predictions can vary in the allowed parameter range.



Predicted Color-Magnitude Diagram
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■ Sometimes it is bimodal, often it is not.

■ Predictions can vary in the allowed parameter range.



Predicted Stellar Mass Functions at High
Redshift
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■ Shape is wrong.

■ Does better if one uses a cooling model that explicitly includes cold
mode accretion.



Predicted Stellar Mass Density Evolution
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Predicted Global Star Formation History
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Predicted Cold Gas Mass Density Evolution
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A New Approach
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■ How does one learn about galaxy formation within the LCDM
paradigm?
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■ How does one learn about galaxy formation within the LCDM
paradigm?

■ Usual approach using Hydro simulations or SAMs.

◆ Make ab initio models of galaxy formation including all the
physical processes that one thinks are important.

◆ Make predictions from these models and compare them with
observations.

◆ Change the model to improve any deficiencies.



The Approach
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■ Our approach.

◆ Start with the observations.

◆ See in general terms what the observationsrequireof the galaxy
formation models.

◆ Put this on a firm statistical footing using Bayesian Inference.
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■ Our approach.

◆ Start with the observations.

◆ See in general terms what the observationsrequireof the galaxy
formation models.

◆ Put this on a firm statistical footing using Bayesian Inference.

■ Similar in flavor to models by Behroozi et al 2012, Moster et al2013,
Yang et al 2013, & Bethermin et al 2013 but improved.

◆ We follow galaxies from one time to another instead of just
matching abundances at different times.

◆ We increase the complexity of the model as required by the data
assessed using Bayes ratios.



A Simple SAM
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■ Use dark halo merger trees.

■ Subsume most baryonic physics by assuming for central galaxies

Ṁ⋆ = Ṁ⋆(Mvir(z),z).

■ Assume star formation in satellite galaxies is quenched exponentially
with a timescale that depends on the stellar mass (two free
parameters).

■ Galaxy mergers and stripping are treated as in other SAMs (one free
parameter).



A Simple Model for the Central Galaxy SFR
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Ṁ⋆ = E
fBMvir

τ0
(1+ z)3/2(X +1)α

(

X +R

X +1

)β( X
X +R

)γ
.

■ E is an overall efficiency.

■ fB is the cosmic baryon mass fraction (fixed).

■ τ0 is a present dynamic timescale of the halos (fixed).

◆ τ0 ≡ 1/(10H0).

■ Two characteristic masses:Mc (X ≡ Mvir/Mc) andR Mc with R < 1.

■ The two masses divide 3 power laws with slopesα, β, andγ:

Ṁ⋆ ∝
Mvir

τ0











Mα
vir if Mvir ≫ Mc

Mβ
vir if Mc > Mvir > R Mc

Mγ
vir if Mvir ≪ R Mc .



Modi Operandi
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■ Use Bayesian Inference to determine the Posterior Distribution of the
parameters given the constraining data.

■ Use one of three observational data sets as constraints:

◆ 1. Thez = 0 galaxy stellar mass function (Baldry et al 2012).

◆ 2. Above plus thez = 1.15,z = 2.5, andz = 4.0 galaxy stellar
mass functions.

◆ 3. Above plus the low redshift cluster galaxy luminosity function
(Popesso et al 2006).

■ Increase the complexity of the model by allowing some parameters to
be redshift dependent.

■ Use Bayes Ratios to decide whether or not the observations require
the increased complexity.



Model I
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■ All parameters are redshift independent.

■ Usez = 0 galaxy stellar mass function as data constraint (Data 1).

■ Matches atz = 0 but gets the massive end wrong at higher redshifts.

■ Fit using only a nine parameter model.



Model I: Redux
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■ All parameters are still redshift independent.

■ Use GSMFs from four redshifts as data constraints (Data 2).

■ Worse atz = 0 and now misses the massive end at all redshifts.

■ Need the SFR at the massive end to be redshift dependent.



Model II
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■ Allow α to be redshift dependent:α = α0(1+ z)α′

.

■ Use GSMFs from four redshifts as data constraints (Data 2).

■ Matches at all redshifts.

■ Preferred over Model I by over 1038 to one!



Model II: SFRs
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■ The star formation rate peaks at around 1012h−1M⊙.

■ In low mass halos SFR increases with halo mass as∼ M2.5
vir .

■ For high mass halos SFR increases as(1+ z)2.3.

■ For low mass halos SFR increases as(1+ z)1.5.



Model II: Clusters
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Popesso 06

■ Model II constrained by Data 2 fails to match the cluster galaxy
luminosity function data.



Model II: Clusters
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■ Even when the cluster data is added as a constraint (Data 3), Model II
fails to match the cluster galaxy luminosity function data.



Model III: Requirements
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■ Dwarf galaxies in clusters formed at high redshift and then accreted.

■ Need to affect the formation of dwarfs at high redshift.

■ Allow γ to be redshift dependent:

γ =







γa if z < zc

(γa− γb)
(

z+1
zc+1

)γ′
+ γb otherwise.

◆ Introduced a critical redshift,zc, where the slope changes.



Model III
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■ Use all the observations as data constraints (Data 3).

■ Matches all the constraining data.

■ Preferred over Model II by over 1011 to one!



Model III
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■ Use all the observations as data constraints (Data 3).

■ Matches all the constraining data.

■ Preferred over Model II by over 1011 to one!

■ Adding more complexity does not statistically improve the fit.



Model III: SFRs
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■ The SFRs for halos≥ 1012h−1M⊙ are the same as in Model II.

■ For lower mass halos star formation is less efficient belowzc ∼ 2.

◆ Could owe to some IGM preheating process that occurs atz ∼ 2,
e.g. supernova heating, blasar heating, or pancake heating.



Star Formation Histories
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■ The most massive galaxies form most of their stars atz > 3.

■ Milky Way’s have an almost constant SFR afterz ∼ 1.

■ Unlike Model II, Model III has a bimodal star formation history for
dwarfs with> 60% of their stars formed byz ∼ 2.

◆ The predicted old stellar population is observed in star counts.



Stellar Mass-Halo Mass Relation
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■ The results for Model II are similar to past work.

■ Above∼ 1012h−1M⊙ the stellar mass to halo mass ratio drops.

■ In Model III, as one goes to higher redshifts the stellar massto halo
mass ratio becomes almost constant< 1012h−1M⊙.



Galaxy Assembly
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■ Model III: massive and dwarf
galaxies have similar assembly
histories.

■ Model II: Dwarfs assemble like
Milky Way galaxies.



Galaxy Assembly
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■ Model III: massive and dwarf
galaxies have similar assembly
histories.

■ Model II: Dwarfs assemble like
Milky Way galaxies.

■ Progenitor Milky Way galaxies have only assembled a few percent of
their stellar mass byz = 2 but 25% of their dark halo mass.

◆ To observe Milky Way progenitors atz ≥ 2 requires observing
galaxies with stellar masses< 109 h−1M⊙.



Galaxy Assembly vs. Star Formation
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■ Massive and dwarf galaxies form half their stars beforez = 2.

■ Intermediate mass galaxies, e.g. the Milky Way, do not form half their
stars untilz < 1.

■ Galaxy assembly follows star formation except forM⋆ > 1011h−1M⊙.



Cosmic Star Formation History
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■ Model II predicts a cosmic SFR that drops atz > 3 while Model III
predicts it remains almost constant.

■ Both models predict∼ 1012 halos dominate star formation atz < 3.

■ Model III: Ever decreasing halo masses dominate atz > 3.



Star Formation in Massive Halos
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■ In halos> 1012.5h−1M⊙ galaxies
only ever contribute< 10% to the
cosmic star formation rate.
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■ In halos> 1012.5h−1M⊙ galaxies
only ever contribute< 10% to the
cosmic star formation rate.
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■ Using their inferred SFRs, Submm galaxies are claimed to contribute
1/3 to 1/2 of the cosmic SFR.

■ The clustering strength of submm galaxies implies that theyare in
massive halos.
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■ In halos> 1012.5h−1M⊙ galaxies
only ever contribute< 10% to the
cosmic star formation rate.
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■ Using their inferred SFRs, Submm galaxies are claimed to contribute
1/3 to 1/2 of the cosmic SFR.

■ The clustering strength of submm galaxies implies that theyare in
massive halos.

◆ ⇒ The star formation rates of submm galaxies must be
overestimated.
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■ We investigated what aspects of galaxy formation arerequiredby the
observed galaxy stellar mass functions atz = 0,1.15,2.5 & 4.0 and
the low redshift galaxy luminosity functions in clusters.
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■ High mass halos (≥ 1012h−1M⊙) must have more efficient star
formation at higher redshifts.

◆ Perhaps owing to the filamentary cold mode accretion seen in
many simulations.
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■ We investigated what aspects of galaxy formation arerequiredby the
observed galaxy stellar mass functions atz = 0,1.15,2.5 & 4.0 and
the low redshift galaxy luminosity functions in clusters.

■ High mass halos (≥ 1012h−1M⊙) must have more efficient star
formation at higher redshifts.

◆ Perhaps owing to the filamentary cold mode accretion seen in
many simulations.

■ Low mass halos (≤ 1011h−1M⊙) must have less efficient star
formation belowz ∼ 2.

◆ Perhaps owing to a preheating process that occurs atz ∼ 2.

◆ e.g. supernova heating, blasar heating, or pancake heating.
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■ Progenitor Milky Way galaxies have only assembled a few percent of
their stellar mass byz = 2 but 25% of their dark halo mass.

◆ Galaxy formation has to be delayed relative to dark halo
formation perhaps owing to galactic wind recycling.

◆ To observe Milky Way progenitors atz ≥ 2 requires observing
galaxies with stellar masses< 109 h−1M⊙, something that is very
difficult in present surveys.
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■ Dwarf galaxies formed> 60% of their stars byz = 2 regardless of
morphological type but many continue forming stars today.

◆ Consistent with the ages inferred from observed star counts.
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■ Progenitor Milky Way galaxies have only assembled a few percent of
their stellar mass byz = 2 but 25% of their dark halo mass.

◆ Galaxy formation has to be delayed relative to dark halo
formation perhaps owing to galactic wind recycling.

◆ To observe Milky Way progenitors atz ≥ 2 requires observing
galaxies with stellar masses< 109 h−1M⊙, something that is very
difficult in present surveys.

■ Dwarf galaxies formed> 60% of their stars byz = 2 regardless of
morphological type but many continue forming stars today.

◆ Consistent with the ages inferred from observed star counts.

■ Massive galaxies form most of their stars atz > 3 but half of their final
mass is assembled atz < 2.

◆ Massive galaxies assemble through merging.



Conclusions
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■ Galaxies in halos> 1012.5 h−1M⊙ contribute very little to the global
star formation of the Universe atz > 2 in apparent contradiction to
their large inferred SFRs.
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