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A Simple SAM

m Create a simple SAM that encompasses most published SAMSs.

m  Assume a cosmology and dark matter type.
0 Six hidden parameter§2, A\,Ho,08,n, & Qp,.

0 Determines power spectrum.

m  Begin with dark matter merger trees.
0 Can be extracted from N-body simulations.

0 Can be generated by a Monte-Carlo method using extended
Press-Schechter.

m  Next model the radiative cooling of the gas.

0 Stop radiative cooling above a halo mas$/f to mock up
“Velvet Rope” feedback, e.g. AGN
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There are Many Ways to Be Cool
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m Different methods give quite different results.
m Accretion is either hot or cold; no mixed accretion.

m Developed new model that has mixed accretion.
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There are Many Ways to Be Cool
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m  Compared to simulations:
0 Total cooling rates too small in low mass, cold mode halos.

0 Total cooling rates are too high in higher mass, hot modeshalo

m Inthe work presented here assume Croton cooling law.
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SAM Star Formation

m  Assume the cold gas forms an exponential disk with scaléheng
ldisk = 0.035 /.

m Stars only form in gasnsg, above density threshold &g M, pc2.

m  SFRinversely proportional to disk dynamical time:
I disk
Wir

Tdisk =
MsF
e
Tdisk
{ sk Wir = VsE

Vi Bsk :
0= Var Wir < VsE

m, =¢

Ex =
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reheat the gas or make a wind.

m  The mass of reheated gasfjgAtm,.

220km/s) PrH
fthO(RH< W) ,

Wir

m The mass of gas in the wind is

. V 2 Vair \ 2
Myind = EwAtM, {O(SN <ﬂ> — fin {(W> } } .
Vesc Vesc

m A wind fraction of fg| returns as hot gas on a dynamical time.

Brazil 6/28



Brazil

SAM Mergers

When dark halos merge the smaller central galaxy becomdslitea
of the larger central along with all previous satellites offbgalaxies.

The satellites start atj, and sink by dynamical friction with a time
scale

1.17r2 Vyir

Vir

In(1+ er/Msat)GMsat .

tfric — fDF

When galaxies merge a starburst occurs consuming a fragjiaof
the combined cold gas,

M <t )Bburst

M central

Sourst— O(burs.t(
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SAM Flowchart
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Play it SAM: the Old Song

Usually the SAM is adjusted “to match” a fundamental datebget

adjusting the parameters “by hand’ and the fit is judged “lg.ey

This is not probabilistically rigorous; there are no confice intervals
for the parameters given the data.

Predictions for other observables are made using the “fridpaters
iInstead of the full range of allowed values and again the™éte
assessed “by eye.”

Some parameter values are fixed arbitrarily.

To assess the effect of some physical parameter one holdsthes
fixed and varies the one parameter.

When adding new physical effects, I.e. new parameters,dhmes of
the old parameters are held at their old values.

Use a Bayesian Inference approach to get around these p®ble
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Bayes Theorem

m Bayes theorem states the probability of a model charaettby its
parameter vectdd, given some data sél.
L(D[6)m(6)
D) =
POID) =+ Dje)m(e)de

m P(6|D): posterior distribution.
m L(D|0): likelihood function; probability of the data giveh

m 711(0): prior distribution of the parameter vect®rour prior knowledge
about the parameter.
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Advantages of Bayesian Approach

m  Maximum Likelihood (ML) assigns the best-fit parameter edato the
model that has the highest probability of generating theontesl data.

m Really want to know: what is the probability of the model fbet
observed data?

m The best fit model suffers from intrinsic covariance and togsybility
of complex topologies leading to multiple, non-Gaussiame®o

m Need the full posterior as provided by Bayesian MCMC.

m Can use statistics like Bayesian Evidence to discriminate/éen
models. e.g. Does one need AGN feedback?
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Bayesian Evidence

m  Apply Bayes theorem to give the probability of the thebtypased on
the dataD given a prior probability of the theory.

__ P(BIM)P(M)
PIMID) = [P(D|M)P(M)dM

where
P(D|M) :/L(D\I\/I,O)n(e\l\/l)de

m P(M|D) is the Bayesian Evidence.
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Bayes Factor

m Can estimate the posterior odds of two different thedviegandM-
parametrized by different parameter vectérsndo-:
P(M1|D)  P(Mj) P(D|My)

= Kio where Kio= :
P(M2|D)  P(My) P(D|My)

(1)

s P(D|M;): the marginal likelihood for model

m If one does not favor either theory a pri% =1 since
P(M1) = P(My).

m Kio: Bayes factor—odds in favor of one theory over another fer th
data.

m  Example: Is data better fit with a model that adds AGN feedBack
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The Bayesian Approach in Practice

Goal is to characterize the posterior distribution by sangdP(6|D).

Not practical to solve analytically or by evaluating the feo®r
probability over a grid in parameter space for complex poid.

Sample the posterior using Markov chain Monte Carlo (MCMC).

MCMC algorithms sample from probability distributions nigia
Markov chain that has the desired distribution as its eopilm
distribution.

A Markov chain is a random process where the next dte
depends only on the current st&end not on the past.

Metropolis—Hastings is a common MCMC algorithm.
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Metropolis—Hastings Algorithm

Use proposal functio®(8P; ') to generate proposed sample

Q(6P;8') must be symmetricQ(6P;8') = Q(0';6P), e.g.
6P = A((6',0%).

Proposal is accepted, i.8'"1 = 0P if

P(OP)Q(61;6P) .\ (L(D|6P)Ti(6P)Q(8'; OF)
P(61)Q(6P; 1) ’1) - m'”( L(D]6")(6)Q(6P; 6) ’1)

wherea is a random numbex ~ 77(0,1).

a<mm(

If the proposal is rejected théhtl = @',

Start from a random initial value®; run for many iterations until
Initial state forgotten, calledurn-in.

Adjust o to get good acceptance rate 25% to get good mixing.
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Bayesian Inference Engine (BIE)

An MCMC parallel software platform for performing Bayesian
Inference over very large data sets.

Developed by multi-disciplinary team from Astro and Comp &c
UMass led by Martin Weinberg.

Uses scalable multiprocessor software architecture aachtgs on
modest cost hardware.

Uses standard MPI and POSIX threads so runs on a broad smpexitru
parallel or scalar machines.

Includes: standard Metropolis-Hastings, simulated tempeparallel
tempering, parallel hierarchical sampling, differengablution, and
iIndependent multiple chains.

Savescheckpoint images so can restart from last MCMC step.

Avallable at:www.astro.umass.edu/~weinberg/bie
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Bayesian SAM Flowchart
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Posterior Madness: Why we need Fancy MCMC

1 »

log g

m Marginalized over 10 of 13 parameters with slices inflgg
m Posterior is very thin and twisted.

m Impossible to find global maximum by hand.
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Play it SAM: The New Song

Use galaxy stellar mass function as data constraint.
Can fit the data well.

Posterior is complex and multi-modal.
[0 Some modes are equivalent to previously published SAMs.

Some parameters are covariant, d€0sr, drp—B3rH; and
Mcc—fpr.

[ EitherMcc is about 162 and fpr is about one oMcc is large and
fpr Is very large making the time for mergers to occur very long.
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Play it SAM: The New Song (With Restrictions)

Restrict the prior to make our SAM more like the Croton SAM.
0 Bse=0.

0 Vsp= 160kms1.

0 fsg= 100, equivalent t&s; ~ 10 M, /pc.

Still fits the data well.
Greatly reduces covariances and the allowed parametee.rang

The main mode in the posterior barely overlaps the main modené
unrestricted prior.

Now requireq3rH to be large.

Previous published work claimed tH&ty must be large to match low
mass end.
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Play it SAM: The New Song (With Even More
Restrictions)

m SetlBry=2.
m Still able to match the data even thouggy Is not large.

0 Moral: Cannot hold one parameter fixed to see the allowederang
of another parameter.

m  Again the main mode has moved.

m Further reduces covariances and the allowed parameteg.rang
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—p5f tHagonal only
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The error covariance matrix of the stellar mass functiorotsraally
diagonal, i.e. the errors in each bin are not independent.

Including the full error covariance matrix reduces thewa#d region.

Using the full covariance matrix has also allowed a new mode.
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Play it SAM: K-band Constrained

K-band errors should be diagonal.

The faint end completeness is not well understood so we [Eren®
It with an additional parameter and then marginalize over it

Again we can fit the data and find other SAMs in some of the
posterior modes.

Some differences with the stellar mass function constaainierence.

0 Now only the mode witiMcc about 182 and fpr about one is
allowed.

0 Allowed ranges of3isp andBry have also changed.
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Conclusions

It is possible and highly desirable to use Bayesian Infexemth
MCMC when using SAMs.

The solutions to SAMS are multi-modal.
Many parameters are highly covariant.
One should use the entire posterior when making predictions

Observers should always publish the full error covarianae&imof
their data to make it useful for Bayesian Inference.

Need to use multiple data constraints simultaneously irithee.
May need to add more physical processes.
“Full” SAMs will have over 50 parameters!

Much work remains to be done.
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