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The N-body Method
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■ An N-body simulation is an attempt to solve the collisionless
Boltzmann equation (CBE),

d f(~x,~v, t)
dt

=
∂ f
∂t

+~v·~∇ f −~∇Φ
∂ f
∂~v

= 0, (1)

in concert with the Poisson equation

∇2Φ = 4πG
∫

d3v f(~x,~v, t). (2)

■ Direct, 6-dimensional integration off is usually impractical.

■ In the N-body approach, one follows the orbits of representative mass
elements, a.k.a. particles.

■ An N-body simulation is an algorithm for Monte Carlo simulation of
the CBE.



The N-body Method (cont)
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■ The particles are tracers of the density field that are used to
simultaneously solve for the gravitational potential and sample the
phase-space density.

■ Schematically:

◆ 1) Start with initial positions and velocities.

◆ 2) Update positions

◆ 3) Compute gravitational accelerations from particle distribution.

◆ 4) Update velocities.

◆ 5) Repeat.



Direct Techniques
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■ Determine the gravitational acceleration by directly summing over all
particle pairs.

◆ Scales asO(n2).

■ Example using leap frog to advance one timestep,∆t:

~xi(t +0.5∆t) = ~xi(t)+0.5∆t~vi(t) (3)

~ai(t +0.5∆t) = ∑
j , j 6=i

Gmj~r i j

|~r i j |3
, ~r i j =~xi −~x j (4)

~vi(t +∆t) = ~vi(t)+∆t~ai(t +0.5∆t) (5)

~xi(t +∆t) = ~xi(t +0.5∆t)+0.5∆t~vi(t +∆t) (6)

■ A symplecticintegrator: maintains Hamiltonian.



Gravitational Softening
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■ Introducegravitational softening:

∑
j , j 6=i

Gmj~r i j

|~r i j |3
→ ∑

j , j 6=i

Gmj
~r i j

(

|~r i j |2+ ε2
)3/2

(7)

■ This form is calledPlummer Softeningandε is thegravitational
softening length.

■ Effectively limits the spatial resolution to 2ε.



Why Gravitational Softening?
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■ Two main reasons to include gravitational softening:

◆ Allow larger timesteps to be used to decrease run time.

◆ Reduce the effects of two-body relaxation and better approximate
a collisionless system.

τr = 0.34
σ3

1d

G2mpρ lnΛ
(8)

≈ 3.9 Gyr
( σ1d

100km s−1

)3 h−2

lnΛ
1011M⊙

mp

(170ρc)

ρ
(9)

◆ where lnΛ is theCoulomb logarithmwith Λ ≈ Rh/4ε andRh is
the half mass radius.

■ Sinceε only enters logarithmically the first reason is most important.



Other forms of Gravitational Softening
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■ The Plummer form of gravitational softening changes the lawof
gravity at all radii.

■ Would like a form that has compact support so that gravity only
changes at small scales.

■ Introduce aspline softenedform of the acceleration:

~ai = ∑
j ,i 6= j

Gmj~r











1
ε3

[4
3 − 6

5u2+ 1
2u3
]

0≤ u≤ 1
1
|~r|3
[

− 1
15+

8
3u3−3u4+ 6

5u5− 1
6u6
]

1≤ u≤ 2
1
|~r|3 u≥ 2

(10)

whereu= |~r|/ε.



Variable Timesteps
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■ One can add variable timesteps to increase computational efficiency.

■ Destroys symplecticness of leap frog integrator but possible to retain
second order accuracy.

■ Two common choices:

◆ Can use power of two subdivisions of largest allowed timestep,
which allows system to be resynchronized every largest timestep.

◆ Can allow particles to all have different timesteps without
restrictions.

■ Aarseth codes use high order integrators and scale asO(n1.7).



Testing the Validity of Results
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■ Check energy, linear momentum and angular momentum
conservation.

■ Try increasing the number of particles. Is the result the same?

■ Try decreasing the timestep. Is the result the same?

■ Try altering the gravitational softening. Is the result thesame?
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Testing the Validity of Results
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■ Check energy, linear momentum and angular momentum
conservation.

■ Try increasing the number of particles. Is the result the same?

■ Try decreasing the timestep. Is the result the same?

■ Try altering the gravitational softening. Is the result thesame?

■ All the above are necessary but not sufficient conditions.

■ Try comparing with other codes.

■ Try running on problems as closely related as possible to your
problem with known solutions and compare.

The best approach!



Particle Mesh Codes (PM)
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■ Use fast Fourier transforms (FFT’s) to calculate the gravitational
accelerations.

■ Done on a regular rectangularM3 grid and isO(M lnM).

■ Schematically the algorithm proceeds as follows:

◆ 1) Assign masses of particles to the grid to determine the density
at the grid points through interpolation.

◆ 2) Compute the gravitational potential at the grid points by
solving the Poisson equation on the grid using an FFT.

◆ 3) Compute gravitational accelerations at the grid points by
finite-differencing the potential.

◆ 4) Calculate the acceleration at each particle position using the
same interpolation scheme used in the mass assignment to ensure
momentum conservation.



Tree Codes
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■ Tree codes group together interactions with distant particles using a
tree data structure.

■ They areO(nlnn).

■ Schematically the force calculation proceeds as follows:

◆ 1) Put particles into the tree structure.

◆ 2) Calculate properties of the tree nodes, e.g. the mass and center
of mass of each node.

◆ 3) Determine the interaction list for each particle (walking the
tree).

◆ 4) Sum the contributions from particles on the interaction list to
determine the gravitational acceleration of each particle.



Types of Trees
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Two main types of tree geometries used:
■ Oct-trees–split space into successively smaller octants by volume.

◆ Each node in the tree has up to 8 children.

◆ Splits in all three dimensions at once.

■ kd-trees–divide one dimension at a time, i.e. each node has one or two
children.

◆ Can divide by volume or by putting a equal number of particlesin
each node.

◆ A kd-tree divided by number is called abalanced kd-tree.
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Two main types of tree geometries used:
■ Oct-trees–split space into successively smaller octants by volume.

◆ Each node in the tree has up to 8 children.

◆ Splits in all three dimensions at once.

■ kd-trees–divide one dimension at a time, i.e. each node has one or two
children.

◆ Can divide by volume or by putting a equal number of particlesin
each node.

◆ A kd-tree divided by number is called abalanced kd-tree.

■ Oct-tree nodes are closest to spheres and hence have the smallest
errors when calculating accelerations.



Oct-trees

Brazil 13 / 37

Each node of the tree has:
■ Pointers to 8 children (could be another node, a particle, ornull if that

node contains no particles).

■ A pointer to its parent node (except for the root node).

■ The position of the center of the node.

■ The size of the node.

■ The mass of the node.

■ The center of mass position of the node.

■ Higher order multipoles of the node.



Building Trees
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Build the tree from top down, one level at a time as follows (O(nlnn)):
■ Start with all the particles with the root node as parent, with only the

root node as anactivenode and with all the particlesactive.

■ Loop over theactiveparticles and determine how many particles are
in each octant of each active node.



Building Trees (cont.)
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■ If an octant has more than one particle, create a node and assign it a
size and a position (size is half the size of its parent node).

◆ Set one parent node’s children pointer to point to this node.

◆ Set this nodes parent pointer to point to its parent.

◆ Add this node to the newactivenode list.

◆ Reset the parent pointer of the particles contained within this node
to point to this node.

◆ Add the particles in the node to the newactiveparticle list.



Building Trees (cont.)
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■ If an octant has one particle, set one of the parent node’s children
pointers to point to this particle.

◆ Do not add this particle to the newactiveparticle list.

■ If an octant contains no particles, set one of the parent node’s children
pointers to point to NULL. Repeat until there are no active nodes.



Building Trees (cont.)
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Calculate the mass, center of mass position, and higher order moments
of the mass distribution from the bottom of the tree up as follows
O(nlnn)):

■ Start with smallest size nodes, the lowest level of the tree (which were
the last nodes created) and add their contributions to the node masses
and center of mass coordinates (and contributions to higherorder
terms if they exist), e.g.∑mand∑m~x.

■ Continue up the tree one level at a time until the root node is reached.

■ Divide ∑m~x by ∑m for each node to determine the center of mass
coordinates (similar operations for the higher moments if they exist).



Walking Trees
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Walk the tree from the top down to determine each particles interaction list
(O(nlnn)):

■ Start with no particles or nodes on theinteractionlist and only the root
node on theactivenode list.

■ Loop through theactivenode list.

◆ Add any children that are particles to theinteractionlist.

■ If the node does satisfy the opening criteria then add it to the
interactionlist and remove it from theactivenode list.

■ Repeat until there are noactivenodes.
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Walk the tree from the top down to determine each particles interaction list
(O(nlnn)):

■ Start with no particles or nodes on theinteractionlist and only the root
node on theactivenode list.

■ Loop through theactivenode list.

◆ Add any children that are particles to theinteractionlist.

■ If the node does satisfy the opening criteria then add it to the
interactionlist and remove it from theactivenode list.

■ Repeat until there are noactivenodes.

■ Once theinteractionlist is made then the acceleration on the particle
can be summed (including any higher order multipoles contributed by
nodes, if such terms exist).



Opening Criteria
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■ Geometric form forθ, theopening angle,

θ ≡ s/d ≤ θmax (11)

s= sizenode, and d = |~xi −~xnode| (12)

■ Can lead to problems if the center of mass of the node is far from the
center of the node so can:

◆ Replacesby
√

3/2 max
{

|~x j −~xcm,node|
}

where j runs over all the
particles in the node andd by |~xi −~xcm,node|.

◆ Replaced by d−|~xnode−~xcm,node|.



Higher Order Multipoles
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■ Can include higher order multipoles for the nodes to make things
more accurate.

◆ This allows a larger choice for the opening angle.

◆ Usually it is more efficient as well, i.e. faster.

■ Since the center of mass is used as the expansion center, the lowest
order correction is of quadrupole order.
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■ Can include higher order multipoles for the nodes to make things
more accurate.

◆ This allows a larger choice for the opening angle.

◆ Usually it is more efficient as well, i.e. faster.

■ Since the center of mass is used as the expansion center, the lowest
order correction is of quadrupole order.

■ If one constructs the interaction list carefully using multipoles of
various orders for each item on the list it is possible to devise a
scheme that isO(n) called theFast Multipole Method.



Comoving Coordinates
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■ For cosmological simulations work with coordinates comoving with
the expansion,~x, related to proper coordinates,~r, and the expansion
factor,a= 1/(1+z):

~x =
~r
a

(13)

■ The momentum of a particle with massm in these coordinates is
~p = ma2~̇x.

■ a evolves according to
(

ȧ
a

)2

− 8π
3

Gρ =
Λ
3
− kc2

a
(14)

whereρ is the mean mass density,Λ is the cosmological constant, and
k=−1,0, or 1 for closed, flat, and open universes.



Comoving Coordinates (cont)
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■ The equations of motion for thei-th particle are

~̇xi =
d~xi

dt
(15)

~̈xi + 2H~̇xi −
1
a
~gi = 0 (16)

■ Using leap frog to advance the particles:

~xn+1/2
i = ~xn

i + 0.5∆t~̇x
n
i (17)

~̇x
n+1
i = ~̇x

n
i

1−Hn+1/2∆t

1+Hn+1/2∆t
+

∆t

an+1/2

~gn+1/2
i

1+Hn+1/2∆t
(18)

~xn+1
i = ~xn+1/2

i + 0.5∆t~̇x
n+1
i (19)

where wherean+1/2 andHn+1/2 are the values of the expansion factor
and the Hubble parameter at the intermediate time.



Boundary Conditions
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■ Two main choices for boundary conditions:

◆ Periodic–good for simulating pieces of larger structures like in
cosmological simulations.

◆ Vacuum–good for simulating isolated objects like galaxies.

■ Thenaturalboundary conditions for:

◆ Direct summation–vacuum.

◆ Tree–vacuum.

◆ PM–periodic.

■ Can make a direct summation or tree code fully periodic usingEwald
summation.



The Fluid Equations
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Dρ
Dt

=
∂ρ
∂t

+v ·∇ρ =−ρ∇ ·v (20)

Dv
Dt

=
∂v
∂t

+v ·∇v =−∇P
ρ

−∇φ (21)

Du
Dt

=
∂u
∂t

+v ·∇u=−
(

P
ρ

)

∇ ·v+ Γ−Λ
ρ

(22)

P= (γ−1)ρu (23)



Eulerian Techniques
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■ The standard approach for solving the fluid equations.

■ Calculate the fluid properties on a regular grid of points.

■ Calculate derivatives using finite differences.

■ Shortcoming: Spatial resolution and dynamic range is limited.

◆ Can be overcome usingAdaptive Mesh Refinement(AMR)



Smooth Particle Hydrodynamics (SPH)
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■ Model the fluid as a collection of fluid elements represented by N
particles.

■ Move the particles using Lagrangian forms of the fluid equations.

■ Some thermodynamic properties are assigned to each particle,e.g.
mass and temperature.

■ Other thermodynamic properties of the fluid,e.g.∇P, are estimated
using local averages.

■ Since the computational model consists of a finite number of fluid
elements, local averages must be made over volumes of finite extent.

■ Local averages are made using an interpolation method that allows
any function to be expressed in terms of its values at a set of
disordered points—the particles.



Interpolation

Brazil 27 / 37

■ The integral interpolant of any functionf (r) is

< f (r)>=
∫

W(r − r ′;h) f (r ′)dr ′ (24)

where the integration is over all space.

■ h is the smoothing length and specifies the extent of the averaging
volume.

■ W is the smoothing kernel which must have two properties∫
W(r − r ′;h)dr = 1 (25)

lim
h→0

W(r ;h) = δ(r − r ′) (26)



Interpolation (cont)
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■ If the values off (r) are only known at a finite number of points then

< f (r)>=
N

∑
j=1

f (r j)

< n(r j)>
W(r − r j ;h). (27)

■ In particular if a massmj is associated with each particle then

< ρ(r)> =
N

∑
j=1

mjW(r − r j ;h) (28)

< f (r)> =
N

∑
j=1

mj
f j

ρ j
W(r − r j ;h). (29)



Interpolation of Gradients
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■ Gradients are calculated in a similar manner. By definition

< ∇ f (r)>=
∫

W(r − r ′;h)∇ f (r ′)dr ′. (30)

■ Integrating by parts yields

< ∇ f (r)> =
∫

f (r ′)∇W(r − r ′;h)dr ′ (31)

< (∇ f )i > =
N

∑
j=1

mj
f j

ρ j
∇W(r − r j ;h). (32)

■ Higher accuracy is obtained by using the relation
ρ∇ f = ∇(ρ f )− f ∇ρ giving

< (∇ f )i >=
1
ρi

N

∑
j=1

mj( f j − fi)∇W(r − r j ;h). (33)



The Kernel
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■ W(r) must be differentiable to at least the same order as that of the
terms present in the dynamical equations.

■ A common choice for the kernel is a Gaussian,

W(r,h) =
1

π3/2h3
e−(r2/h2). (34)

■ Another choice that has compact support is a spherically symmetric
spline kernel

W(r,h) =
1

πh3







1− 3
2

(

r
h

)2
+ 3

4

(

r
h

)3 0≤ r
h ≤ 1

1
4

(

2− r
h

)3
1≤ r

h ≤ 2
0 r

h ≥ 2

. (35)



The Momentum Equation
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■ In the Lagrangian form the momentum equation is

dv
dt

= −∇P
ρ

(36)

(∇P)i

ρi
= ∑

j
mj(Pj −Pi)∇iW(r i j ,h). (37)

■ This form is not symmetric ini and j so would not conserve linear and
angular momentum, but one can symmetrize using

∇P
ρ

= ∇
(

P
ρ

)

+
P
ρ2∇ρ (38)

then

(∇P)i

ρi
= ∑

j
mj

(

Pi

ρ2
i

+
Pj

ρ2
j

)

∇iW(r i j ,h). (39)



The Thermal Energy Equation
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■ In Lagrangian form the thermal energy equation is

du
dt

=−
(

P
ρ

)

∇ ·v+ Γ−Λ
ρ

. (40)

■ Ignoring the heating and cooling terms this can be written as

dui

dt
=

N

∑
j=1

mj
Pj

ρiρ j
vi j ·∇iW(r i j ,h). (41)

■ Often one follows the entropyA instead of the thermal energyu
making energy conservation manifest and

ui =
Pi

(γ−1)ρi
= (γ−1)−1Aiργ−1. (42)



Varying Resolution
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■ To further increase the dynamic range it is also possible to allow h to
vary spatially. Now deriving from Lagrangian Variation

< ρi(r)>=
N

∑
j=1

mjW(r − r j ;hi) (43)

dvi

dt
=−∑

j
mj

[

fiPi

ρ2
i

∇iW(r i j ,hi)+
f jPj

ρ2
j

∇iW(r i j ,h j)

]

(44)

fi =

[

1+
hi

3ρi

∂ρi

∂hi

]−1

(45)



Artificial Viscosity
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■ To allow shocks to form and to prevent the interpenetration of high
Mach number flows it is necessary to introduce an artificial viscosity.
Add terms

(

dvi

dt

)

AV
= −∑

j
mjΠi j ∇iW(r i j ,h) (46)

(

dui

dt

)

AV
=

1
2∑

j
mjΠi j vi j ·∇iW(r i j ,h) (47)

Πi j =
−αµi j c̄i j +βµ2

i j

ρ̄i j
(48)

µi j =

{ vi j ·r i j

hi j (r2
i j /h2

i j+η2)
for vi j · r i j < 0

0 for vi j · r i j ≥ 0
. (49)



DI-SPH
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■ SPH has trouble getting instabilities like the Kelvin-Helmholtz
instability correct owing to artificial surface tension between phases.
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■ SPH has trouble getting instabilities like the Kelvin-Helmholtz
instability correct owing to artificial surface tension between phases.

■ Added DI-SPH (Hopkins 2012) to our Gadget 3 cosmology code.

■ Can get Kelvin-Helmholtz instabilities now.

■ Minor changes to galaxy masses at the massive end.

■ Almost no change to galaxy accretion modes.



Stellar Mass Functions
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Fig. 2.— Stellar mass function at different redshift for the two simulations. Blue lines are

from non-DISPH run. The dashed black line shows the mass limit of 64 gas particles. The

solid, dash-dotted, dashed and dotted lines show the smf at redshifts 0, 1, 3, 4 respectively.



Accretion Modes
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Fig. 2.1: Accretion split into the five major channels plotted as a function of redshift: cold mode

(blue), hot mode (red), wind (green), stripped/disrupted (yellow), and mergers (magenta). On

the left these are plotted as the fraction of accretion and the right panels are represented as an

accretion rate, in log10
(

h3Msol

Mpc3yr

)

. The total accretion rate is plotted in the right panels in black.

This is done seperately for all galaxies (top two panels), central galaxies only (middle panels), and

satellite galaxies (bottom panels). This is done for both the SPH simulation (solid line) and the

DISPH simulation (dashed line).
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