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Topics
• Formal Solution
• Discrete Data
• The Direct Transform
• The Fast Fourier Transform
• Weighting, Gridding, and all that
• Deconvolution



The Formal Relations
• We learned, from my Lectures #1 and #2, that under some 

conditions (often true to good accuracy) the sky brightness Iν(l,m) 
is related to the interferometer measurements V(u,v) by:

where I have ignored small angle factors for notational simplicity.  
• The formal inversion of this equation is:

• This is very simple (and very pretty), but cannot directly be used, 
since the functions concerned are analytic – known for all angles 
and distances.  

• What we actually have are (often a large number of) discrete 
samples of the visibility, which we can write as   Vi(ui,vi).    

•  This means we cannot guarantee a correct determination of 
I(l,m).    
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The Sampling Function, and the Dirty Map

• We define the ‘Dirty Image’ by:

where S(u,v) is the ‘sampling function’, which describes the actual 
locations in the (u,v) plane where samples of the Visibility are 
taken.  

• We can write this as:

• Then, using the a property of the Dirac delta function, we find

• This function is often called the ‘Principle Solution’.  
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The Simplest Inversion:  The Direct 
Transform

• The simplest procedure is to utilize ‘brute force’, and directly 
invert the equation through direct summation.  

• Define a square grid, N x N cells in angle space (l,m). 
• For each cell, compute directly the sum:
 

• In fact, this form is not quite right, as we have not 
utilized the Hermitian nature of the data.  
• Because the sky is real, the visibilities are Hermitian, so that:

• If we write:  
• Then we can write, for the ‘principle solution’
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• To gain a better appreciation of what is happening here, consider 
a single observation with a single pair of antennas. 

• Then
• The baseline formed by this pair has coordinates (u0,v0).  
• The visibility amplitude for the observation is A0, the phase is ϕ0.  
• The ‘map’ from this single visibility is then:

• This is a ‘cosinuoidal sea’, of amplitude  A and spatial period 
oriented at an angle

and offset by angle   ϕ0.

Some Illustrations …
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• The Contribution of a Single Visibility.  

• l

•m • 1/u0

• 1/v0
•θ

• +      +      +       +      
+

• Offset = • ϕ0

• Cosine
•Maxima

•Every single visibility observation adds another cosinuoidal ‘sea’ 
with its own amplitude, orientation, spatial period, and offset.  

•The map is the sum of all these consinusoids.   



Examples, using the VLA …
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• Two antennas -- single baseline, single observation, 1 Jy point 
source.  

•UV-Coverage •Image



More Antennas = Better Images!
• A single observation of a point source.   
 3 ant, 3baselines       4, 6                    7, 21                  10, 45                 27, 351
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           100%                      100%                             93%                        82%              41%    = Pk.sidelobe
          71%                        41%                        15%                          11%                       4%    = rms.             
          -280%                     -104%                    -32%                          23%                     -10%   = Pk. neg.



To do better – Observe over Time.
• UV Coverage and Images for a point-source for 0,1, 6, and 

12 hours’ observing, with the 27-antenna VLA, at δ = 60.
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 Pk Sidelobe    41%                          14%                                   2%                                   1% rms                           

            11%                                      4%                                   0.5%                            0.3% Max. Neg.        
-          10%                                   -10%                                   -5%                                 -4%

       Snapshot                         1 Hour                        6 Hours                     12 Hours



Multi-Frequency Imaging
• One can dramatically improve the (u,v) coverage with a 

wide-band system – and a wide-bandwidth correlator.  
• Examples:  1 frequency channel at 5.5 GHz, and 8 frequency 

channels, spread over 1 GHz (from 5.5 to 6.5 GHz) 
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Problems with Sampling …
• You will note that the (u,v) sampling by the interferometer is 

very non-uniform.  
• There are large holes, and a large oversampling in the inner 

regions (short spacings).  
• What we really want is a completely uniform sampling, from 

the shortest spacings (zero) to the largest (λ/Bmax).  
• For a single observation, certain array designs (equi-spaced 

linear, equi-spaced T, equi-spaced X) will provide a uniform 
sampling.  

• But even for these, the integration over time still causes a 
huge overweighting for short spacings.

• So some sort of averaging, or some sort of correction 
procedure will be needed to reduce the dominance of these 
short spacings.  
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Big Data Sets – Why we need the FFT.
• This simple approach involves a lot of calculations.  
• We have N2 cells, each of which requires a determination of the 

cosine factor, followed by a multiplication by the visibility 
amplitude, followed by a summation over all M measurements.  

• We thus have ~2MN2 real multiplications, and since M~N2, the 
number of cosine evaluations, multiplications, and additions is 
~N4!  

• This can be managed with modern computers for modest values 
of N (say, ~100).  But large-scale imaging requires N > 103, so 
another way is needed.  

• Better Way:  Use the magic of the FFT algorithm.  The number of 
computations now scales as:  N2 log2(N) – much better than N4!

• But – the speed gained is because the data must be regularly 
arranged – which means we must ‘grid’ the uv-data onto a 
regular grid.  
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• The cell sizes are set by the field of view, and the maximum baseline:
•                                        (2lmax is the full field-of-view, in radians)

•                                        (umax is the longest baseline, in wavelengths)

•       Note that the cellsizes automatically satisfy the sampling theorem.

Two Grids:  the (u,v), and (l,m).  
• We now have two N*N grids – one for the (u,v) data, and the 

other – its Discrete Fourier Transform -- for the image.  
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• l

• m
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•U-V Plane •Image Plane



• We can use these simple relations to establish some guidelines 
about image sizes.  

• The largest field of view (size of the image) would normally be 
the angular separation of the antenna’s first nulls.  

• From this, 
• The longest baseline is:  
• And from this, 
• The size of the grids comes from the relation: 
 
• For the VLA at 6 GHz (λ=5cm) D = 25 m, so:  Δu = 500 

(wavelengths)
• And in the A-configuration, Bmax = 35 km, so Δl = 1.4x10-6 

(radians)
• And for the size of the grid:  N = 5600 (cells).  
• Note that the image size is independent of wavelength!  

Example:  Size of the Grids
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Advantages and Disadvantages of Gridding
• Use of the FFT is necessary for large databases
• Thus, we must grid the data onto a regular grid.  
• All data within any one cell will be averaged in
some way, and the mean placed at the cell center.  
• There are some consequences:

– This introduces errors:  The visibilities are ‘moved’ 
to a (u,v) point where they were not measured.  
– The regularity of the gridded data causes aliasing.  

• The first issue is not critical if the number of data points is 
large (lots of points within a cell – the mean will be ‘about 
right’).  

• The second issue is definitely a problem, but can be 
handled by suitable anti-aliasing convolution functions.  

• What is ‘aliasing’, and how can we control it?  
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This cell’s data 
are along one 

side.

This cell is  
fairly well 
sampled



Aliasing
• Aliasing is a phenomenon which occurs when a Fourier sum is 

made over data which are all equidistant.  
• In this case, there is no way to discriminate between a phase 

change of 0, 2π,  4π, … per cell.  
• When we grid data, we are generating a regularity which 

enables emission from outside the image to appear in it!  
• From a Fourier series point of view, the transform of a regularly 

gridded function is itself a regularly gridded function – in the 
case, the image is itself replicated indefinitely in all directions.  
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Aliasing Example:  Pillbox vs. 
Spheroidal
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• Two sources – one at the center, and one displaced to 
the left.  Offset = 50”               55”                  60”

• Top Row:  
• Pillbox Convolution
• The aliased source 

is only slightly 
attenuated.

• Bottom Row:  
Spheroidal Conv.

• The aliased source is 
nearly completely 
extinguished!



Managing Aliasing
• In general, we have to use the FFT – thus we are vulnerable to 

aliasing.
• How to manage?

– Make a bigger image!  Big enough that all real emission lies 
within the transform area.

– But this rather defeats the purpose of the FFT, especially if the 
outside emission is far away.  

• A generally better method is to utilize the data within the cell and 
the adjacent cells.  

– The information to discriminate lies within the data within 
these cells – far away emission has a strong phase gradient 
within each cell.  

– With enough data, and with a averaging (smoothing) function, 
out-of-field emission can be very strong suppressed.  

– Some sophisticated gridding functions are utilized, which 
suppress the aliasing very well.  
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Various Antialiasing Functions
• Standard Imaging packages have 

numerous convolution functions 
available.  

• Shown here are three which are 
available in AIPS:

– Pillbox (1 cell simple average)
– Spheroidal
– Exponential * sin(x)/x

• X-axis is in units of the full map 
width 

• Y-axis is the log(suppression), after 
correction for the attenuation within 
the central image.  

• Note:  these functions are correct 
only when data are uniformly 
distributed.   
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Gridding Correction

• The anti-aliasing functions partially 
suppress emission within the 
central field.

• This suppression must be corrected 
for, using the known functions.  

• The result of this is shown to the 
right.  

• Note that the correction factors are 
valid for a uniform distribution 
within the convolving window.  

• The actual distribution will be 
different, so there will be errors in 
the map amplitudes, especially 
towards the edges.  
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More on u-v Plane Weighting
• We can do more than apply anti-aliasing functions when 

preparing the data for interpolation to the regular (u,v) grid:
– Tapering:   The sharp cut-off in sampling (due to the 

longest baseline), and the sparseness of the sampling at the 
longest baselines both lead to ‘ringing’ in the dirty image.  

– This can be reduced by adjusting the weighting of the data 
(reducing the amplitude) as a function of the radius.  An 
exponential, with unity at the origin, and ~30% amplitude at 
the longest baseline, is common.  

– The effect is to reduce the sidelobes, but also degrade the 
resolution.

– Natural vs. Uniform Weighting:  Ideally, the amplitude of 
the visibility gridded in each cell should be the mean of the 
data within that cell.  

– But since there are generally far more points in the inner 
parts of the (u,v) plane than in the outer, doing this simple 
averaging can considerably reduce sensitivity.  
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‘Natural’ vs. ‘Uniform’ Weighting

• Two extremes can be identified:
– ‘Natural’ Weighting:  The sum of all values within the cell 

is utilized.  This maximizes sensitivity, but greatly 
degrades the resolution.  

– ‘Uniform’ Weighting:  The average of all values within the 
cell is utilized.  This is closest to what we really want – but 
loses sensitivity.  

• Some examples should help clarify this.  
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Examples of Weighting
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•Four ‘Dirty’ Images:
• Upper Pair:  A point source.
• Lower Pair:  A 20” disk.  

• The effect of ‘Natural’ 
weighting is to ‘soften’ and 
broaden the response.  

• The peak brightness of the 
disk is much higher, due to 
the larger beam.  

• The peak brightness of the 
unresolved source remains 
the same.    

• ‘Uniform’ Wgt.     ‘Natural’ Wgt.  



Robust Weighting Functions.
• There are more options than simply ‘natural’ and ‘uniform’.  
• Dan Briggs generated a simple, single valued weighting system 

– applied as part of the gridding operations – which allow a 
kind of ‘hand tailoring’ to balance the gain of sensitivity against 
the loss of resolution.

• Available in both AIPS and CASA (and presumably in other 
imaging packages).  

• When should the user use ‘natural’ weighting?  
– Only for detection of faint objects, when fidelity of the 

imaging is not a primary concern.  
– There is a loss of ~20% in sensitivity when using ‘uniform’ 

weighting for VLA data.  
– The more centrally concentrated the array (as in some SKA 

designs), the severe is the loss in sensitivity when uniform 
weighting is used.  
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Tapering
• Besides the convolution/gridding operations, we can also 

impose an overall taper to the (u,v) plane, in order to generate 
a Dirty Beam with more desirable characteristics.  

• In most imaging packages, tapering is by a circular Gaussian, 
specified to some standard attenuation value at a specific 
radial distance.
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Taper             None                               30% @ 160 kl                   30% at 80 kl
Beam           1.25 x 1.09                       1.40 x 1.26                      1.85 x 1.74
Pk Neg.           -3.9%                                 -1.7%                              -1.1%
rms                 0.29%                                  0.27%                            0.31%



• ‘Deconvolution’ is the process of removing artifacts caused by the 
irregular and/or incomplete sampling in the (u,v) plane.  

• The ‘dirty’ image provided by the Fourier inversion, ID(l,m) is 
related to the correct image I(l,m) by:

where BD(l,m) is the ‘dirty beam’ -- the F.T. of S(u,v).  
• The ‘dirty’ map and ‘dirty’ beam are called this because they look 

terrible.
• This is caused by a critical lack of information – there are many 

‘cells’ in the (u,v) plane for which we have no measurements!  
• In principle, these ‘holes’ could have any values at all.  
• However, the true sky has characteristics which we can use to 

assist us in ‘guessing’ the values in the missing cells.  
• Thus,  deconvolution is the process of estimating the visibilities 

for the locations where we have no observations.

Deconvolution
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Typical U-V Coverage, and the Gaps.
• Shown is a short (4 hours’) uv-coverage with the VLA of a low-

declination source (Hercules A) at 3.6cm.  
• Key features:

– No data beyond 300 Kλ
– A (small) central hole.
– Many large gaps!

•The gaps are much larger 
than the inverse source size.
•Without additional 
information, there is no way
to fill in these ‘gaps’.  
• What information can help?
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A Typical Dirty Beam and its 
Coverage
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Multi-Frequency Imaging
• One can dramatically improve the (u,v) coverage with a 

wide-band system – and a wide-bandwidth correlator.  
• Examples:  1 frequency channel at 5.5 GHz, and 8 frequency 

channels, spread over 1 GHz (from 5.5 to 6.5 GHz) 
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Deconvolution:  Constraints we can 
Use…

• Because the ‘holes’ in the UV coverage are generally much larger 
than the inverse image size, the missing information cannot – in 
general -- be interpolated from nearby data without extra 
information.  

• The deconvolution programs can use all the help we can provide.  
• Some useful constraints include:

1. Finite source sizes:  If wee know (or think we know) the 
regions from which emission arises, deconvolution proceeds 
much better.

2. Knowledge of the shape/size/pattern of the dirty beam helps 
in identifying likely regions of emission.

3. Mostly empty field:  In many cases, the fraction of the pixels 
with emission is small.  

4. All positive emission:  Useful for Stokes I.  (Cannot be used 
for Q, U, or V). 
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Major Forms of Deconvolution
• There are two well-known algorithms used in radio 

interferometry,  and a number of lesser known ones 
under development.  

• There are two major classes of deconvolution 
algorithms (that I know of).  

1. CLEAN:  An iterative procedure which subtracts the 
PSF (Dirty Beam) from the image.  

2. MEM:  The ‘Maximum Entropy Method’ algorithm 
which finds an all-positive image with maximum 
smoothness whose transform matches the original 
data.  

• The MEM method has many variants, some of which 
I will mention.  
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CLEAN
• The ‘CLEAN’ algorithm was developed by Hogbom in 1974.  Various 

improvements (mostly for speed) have been developed since then.  
• CLEAN remains the most commonly used procedure.  
• The procedure is:

1. Locate the highest point of emission in the image, and subtract 
from the entire image the dirty beam, scaled by some ‘loop 
gain’ γ.  Remember the location and peak brightness removed.

2. Repeat step 1 until some level of noise is reached.  This image 
is the ‘residual’ 

3. Rebuild the image, using the list of locations and peaks, using a 
‘clean beam’ in place of the psf.  

4. Add the residuals back.  
• In essence, CLEAN imagines the emission to be a set of unresolved 

or partially resolved, well separated objects.  
•      Despite its simplicity, CLEAN works remarkably well.  
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CLEAN – some additional points.  
• There are a number of variants of ‘CLEAN’:  the ‘Clark’ and ‘Cotton-

Schwab’ algorithms are variants which permit much faster searching 
and subtracting.  See the SISS book for details.

• CLEAN is naturally best with compact emission.  
• CLEAN often does a poor job on low-brightness sources – the typical 

signature being ‘rippling’ in the restored image.  The procedure can 
diverge in these situations, especially when the (u,v) coverage is 
poor.  

• CLEAN is very slow when deconvolving large extended sources.  
• CLEAN is not effective at recovering the total (zero-spacing) flux, nor 

at reliably providing ‘super-resolution’.  
• There is a poor theoretical understanding of CLEAN.  
• The use of ‘Clean boxes’ is highly recommended.  
• The interaction between the key parameters:  loop gain, the number 

of interactions,  and the location of boxes, to provide the ‘best’ 
image, is a matter of experience.  

34



Examples of CLEAN at work.
• Shown are partial deconvolutions of a field with 5 sources, of 

strengths 1.0, 1.0, 0.1, 0.01, and 0.001 Jy.  Loop factor = 20%.  
• Simulated snapshot with VLA, with suitable noise added.  
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• Top Left:  Dirty Image
• σ = 53 mJy

• Top Right:  After 50 comp.
• σ =  5.7 mJy

• Bottom Left:  After 150 comp.
• σ = 0.74 mJy

• Bottom Right:  Done (310 
comp).

• σ = 0.19 mJy
• Note:  the weakest source is 

not visible – below the noise.  



With a Full Synthesis:
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• Unsurprisingly,  the quality and sensitivity of the image improves 
with more data.

• Here are the dirty and CLEANed images for a full 12-hour 
observation.  

• Note that the weakest source is easily visible now.  

• Dirty Image rms:  
4.1 mJy

• Clean Image rms:  
0.012 mJy



• The other algorithm most commonly used is ‘VTESS’, which 
uses a ‘MEM’ method. (‘MEM’ = ‘Maximum Entropy Method’).   

• There was (and remains) a vigorous debate amongst the 
experts (and in the literature) concerning this method.  

• This algorithm utilizes a ‘dirty’ image and psf to provide an 
output image which:

– fits the data, and
– maximizes a function chosen to emphasize output 

smoothness and positivity.  
• A function commonly employed is:

where Mk is a ‘default’ image.   
• Various other functions have been proposed, and there has 

been much discussion on the informatics content of such 
functions.  

MEM Methods -- VTESS
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• The procedure to find the new image must be constrained to 
match the original visibility data, within the noise.  

• The algorithms, at each step, do this by minimizing the χ2 (to 
within the noise):

• As written, the resulting image fits long spacings too well, 
and the short spacings (sensitive to total flux) too poorly.  

• This problem is avoided by adding another constraint:  That 
the solution match the known total flux.  

• The ‘default image’ is important to assist the algorithm to 
find an acceptable solution.  

• Most common ‘default’ is a blank image whose sum equals 
the total flux.

• Better would be a low resolution image from (say) a single 
dish, or a lower resolution array.  

MEM, (cont.)
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Simulation Observations of a Big 
Disk.

• The radial visibility function 
is shown on the right.

• It is a ‘jinc’ function – J1(x)/x.  
• Note that there are no data 

between 0 and 2 kλ – the 
complete visibility function 
should be 10 Jy at 0 baseline.  

• In essence, the imaging 
programs use ‘0’ when there 
are no data.
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• To allow comparison of VTESS with CLEAN, I generated a 12-
hour observation of a 10 Jy, smooth 40 arcsecond wide disk.



VTESS vs. CLEAN – Big Disk
• Shown below are test deconvolutions (using simulated data) for 

an image of a 40 arcsecond-wide disk.  
• The large panel shows the ‘dirty’ image – note the negative 

bowl, caused by the absence of data at short spacings.  
• Top Panels:  CLEAN.  Bottom Panels:  VTESS
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•Small Panels:  
• Top Left:  100,000 

component CLEAN, with 
restore.

• Top Right:  Same 
CLEAN, but no clean 
beam restore.  

• Bottom Left:  40-cycle 
VTESS, with gaussian 
smoothing.  

• Bottom Right:  Same 
VTESS, but no 
smoothing.  

• Disk brightness:  ~20 
mJy/beam. 



VTESS is not suitable for Point 
Sources.
• VTESS seeks maximum smoothness.  It is thus not expected to 

handle point objects very well.  
• The simulation below demonstrates this.  
• I’ve added a 1 Jy point source to the 10 Jy large disk.   
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• CLEAN handles the 
additional point 
source well.  

• VTESS has done rather 
badly.  

• A hybrid method 
would be optimal.  

• VTESS has provided 
super-resolution.  



Some Final Points:  VTESS and CLEAN
• VTESS produces images which have ‘variable resolution’ – 

point sources will deconvolve to different shapes, depending 
on SNR.  

• If a uniform ‘flux/beam’ is wanted, one must smooth the 
output image with a suitable Gaussian.

• But since VTESS provides good ‘super-resolution’ capabilities 
(much better than CLEAN), and provides output images in ‘Jy/
pixel’,  smoothing the output is throwing away information 
which is likely good.  

• CLEAN *must* smooth the output images, since its ‘super-
resolution’ capabilities are obviously poor!  

• The ‘MEM’ methods are generally better, but CLEAN still 
dominates – for only two reasons (IMHO):

– Most fields are indeed largely dominated by small objects.
– It’s easier to use.  
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• The two techniques described before are amongst many 
currently being developed.  

• Another variant Compressive Sensing,  minimizes a different 
function:

• d is the data vector (visibilities),  and Fa is transform of the 
model, a.  

• The λ is a multiplier times the absolute value of the model – 
this is a flux parameter.

Other Methods…
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Compressive Sensing – FISTA 
algorithm

• To demonstrate, Michiel 
Brentjens generated this 
simulation.

• Top Left:  A pair of VLA 
snapshots with 100 
background sources.

• Bottom Left:  The 
deconvolution.  

• Top Right:  The residuals 
– just noise.  

• The algorithm does well 
with point sources, and 
has some advantages 
over ‘CLEAN’.  

• Peak 1 Jy, rms 0.1 mJy.
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A Short Summary
• Although the Direct Transform will give the most accurate 

result, data volumes require the FFT, and hence gridding.
• The negative effects of gridding (aliasing, and attenuation 

over the field) can largely be negated through use of good 
convolution functions, and by utilizing a lot of data.  (!)

• The mathematics of imaging is well established.
• Deconvolution is the process of removing sidelobes from 

images – equivalent to interpolating data into cells where 
none were taken.  

• Deconvolution is as much an art than science – the CLEAN 
algorithm still has no good theoretical understanding.  

• CLEAN methods do best on point sources, MEM methods are 
best for extended emission.

• New methods (Wavelet decomposition, compressive sensing, 
etc.) are under development.
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