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My Apologies, Up Front

• This lecture contains some difficult material. 
• It is *impossible* to adequately convey this material in 

75 minutes!  
• So this lecture will only hit the ‘high points’, and makes 

extensive use of figures and diagrams.  
• Many good references:

– Born and Wolf:  ‘Principle of Optics’, Chapters 1 and 10
– Rolfs and Wilson:  ‘Tools of Radio Astronomy’, Chapter 2
– Thompson, Moran and Swenson:  ‘Interferometry and 

Synthesis in Radio Astronomy’, Chapter 4
– Tinbergen:  ‘Astronomical Polarimetry’.  All Chapters.

• Great care must be taken in studying these – 
conventions vary between them.  



Why Measure Polarization?

• In short – to access extra physics not available in total 
intensity alone.  

• Examples:
– Processes which generate polarized radiation:

• Synchrotron emission:  Up to ~80% linearly polarized, with no 
circular polarization.  Measurement provides information on 
strength and orientation of magnetic fields, level of turbulence.

• Zeeman line splitting:  Presence of B-field splits RCP and LCP 
components of spectral lines by 2.8 Hz/µG.  Measurement 
provides direct measure of B-field.

– Processes which modify polarization state:
• Faraday rotation:  Magneto-ionic region rotates plane of linear 

polarization.  Measurement of rotation gives B-field estimate.
• Free electron scattering:  Induces a linear polarization which 

can indicate the origin of the scattered radiation.      



Example: Linear Polarization of Cygnus A

• VLA @ 8.5 GHz   B-vectors    Perley & Carilli (1996)

10 kpc



Example: Faraday Rotation for Cygnus A

– Color-coded map of the Rotation Measure – the slope of Faraday 
Rotation vs. λ2.  

– RM is proportional to the density-weighted longitudinal B-field, 
imbedded in the cluster gas surrounding the radio source.

Dreher, 
Carilli 

and Perley 
(1987))



Example: Zeeman effect



What is Polarization?

• Electromagnetic field is a vector phenomenon – it has 
both direction and magnitude.  

• From Maxwell’s equations, we know a propagating EM 
wave (in the far field) has no component in the direction 
of propagation – it is a transverse wave:  

• Hence, in a coordinate frame with the (z) axis oriented 
along the direction of propagation, Ez = 0.  

• The characteristics of the independent transverse   
components (Ex, Ey) of the electric field are referred to 
as the polarization properties.  



The Polarization Ellipse

• We consider the time behavior of the E-field in a fixed 
perpendicular plane, with the z-axis directed along the 
direction of propagation towards the observer.  

• For a monochromatic wave of frequency ν, we can write

• These two equations describe an ellipse in the (X-Y) plane:

  
• The ellipse is described by three parameters:  

– The amplitudes Ax, Ay, and
– The phase difference, δ = δy – δx 



Elliptically Polarized Monochromatic Wave

According to Maxwell’s 
equations, an EM wave is 
elliptically polarized.

In general, three parameters 
are needed to describe  the 
ellipse. 

•  Ax – X-axis amplitude max
•  Ay – Y-axis amplitude max
•  α = atan(Ay/Ax) – an angle 

describing the orientation

If the E vector is rotating:
• Clockwise, the wave is Left 

Elliptically Polarized:
• Anti-clockwise, the wave is 

Right Elliptically Polarized.  



• A more natural description is in a 
frame (ξ,η), rotated so the ξ-axis 
lies along the major axis of the 
ellipse.  

• The three parameters of the 
ellipse are then:

–  Aη : the major axis length
–  Ψ:  the position angle of this 

major axis, and
–  tan χ = Αξ/Αη : the axial ratio

• It can be shown that:

• The ellipticity χ is signed:
χ > 0 => LEP (clockwise)
χ < 0 => REP (anti-clockwise)

In a more Natural Reference Frame



Alternate Description – The Circular Basis

• We can decompose the E-field into a circular basis, rather than a 
cartesian one:

– where AR and AL are the amplitudes of two counter-rotating unit 
vectors: eR (rotating counter-clockwise), and eL (rotating 
clockwise)

• The polarization ellipse is again described by three parameters:



Circular Basis Example

• The polarization ellipse 
(black) can be 
decomposed into an X-
component of amplitude 2, 
and a Y-component of 
amplitude 1 which lags by 
¼ turn.  

• It can alternatively be 
decomposed into a 
counterclockwise (RCP) 
rotating vector of length 1.5 
(red), and a clockwise 
rotating (LCP) vector of 
length 0.5 (blue).   



Stokes Parameters

• Three parameters are sufficient to describe the monochromatic 
EM wave properties.  

• It is most convenient to have the three parameters share the 
same units, and have easily grasped physical meanings.

• It is standard in radio astronomy to utilize the parameters 
defined by George Stokes (1852), and introduced to astronomy 
by Chandrasekhar (1946):

• Note that  

• Thus – a monochromatic wave is 100% polarized.                                  



Interpreting the Meaning of I, V, Q, and U

• I is the total power.  

• V is the difference between the 
power in RCP and LCP 
components.  

• Q is the difference between vertical 
and horizontal power. 

• U is the difference between 
orthogonal components in a frame 
rotated by 45 degrees.  

• If V = 0, the wave is 100% Linearly Polarized
• If Q=U=0, the wave is 100% Circularly Polarized
• In general, the wave is Elliptically Polarized



Pure Linear Polarization:  V = 0

• Presume a linearly polarized wave, of unit power.
• Then, if:  

– The wave is vertically polarized:
• Q = 1    U = 0

  
– The wave is horizontally polarized:

• Q = -1   U = 0

– The wave is polarized at pa = 45 deg:  
• Q = 0    U = 1

– The wave is polarized at pa = -45.
• Q = 0    U = -1  



Linear Polarization (Q, U)

• In general, we define:
– The Linearly Polarized Intensity:  

– The orientation of the plane of polarization:

– Signs of Q and U tell us the orientation of the plane of polarization:

Q > 0

Q < 0Q < 0

Q > 0

U > 0

U > 0

U < 0

U < 0



In General:  Some Illustrative Examples

Pol Ellipse I V Q U

1 1 0 0

1 -1 0 0

1 0 1 0

1 0 -1 0

1 0 0 -1

1 0 0 1

1  0

1  0  



Non-Monochromatic Radiation, and Partial Polarization

• Monochromatic radiation is nonphysical.  
• No such condition can exist (although it can be closely 

approximated).  
• In real life, radiation has a finite bandwidth Δν – the 

signals are quasi-sinusoidal, specified by an amplitude 
and phase for a limited time t~1/ Δν.   

• Because the amplitudes and phases of the received 
signals are now variable, there are no unique, 
stationary values of amplitude and phase.  

• We must then use suitably defined averages of these 
quantities to define the polarization characteristics.



Stokes Parameters

• In the quasi-monochromatic approximation, the incoming EM 
wave can be described, for a period Δt~1/Δν, by two 
amplitudes, Ap and Aq, and a phase difference, δpq.  

• The two amplitudes describe the electric field amplitudes of the 
two independent orthogonal states of the radiation.

• For the orthogonal linear, and opposite circular bases, we 
have:

• The angle brackets <> denote an average over a time much longer 
than the coherence time 1/Δν.

• These four real numbers are a complete description of the polarization 
state of the incoming radiation.  

• They are a function of frequency, position, and time.  



Stokes Visibilities

• Recall the earlier lectures, where we defined the Visibility, V(u,v),  
and showed its relation to the sky brightness:

                V (u,v)                 I (l,m)   (a Fourier Transform Pair)

• In our derivation, we were deliberately vague about what this 
brightness was.  

• We will now be more formal, and consider the true brightness 
distributions for I, Q, U, and V.  

• Define the Stokes Visibilities I, Q, U, and V, to be the Fourier 
Transforms of these brightness distributions.  

• Then, the relations between these are:

• I           I,     Q           Q,     U           U,     V           V
• Stokes Visibilities are complex functions of (u,v), while the Stokes 

Images are real functions of (l,m).  
• Our task is now to measure these Stokes visibilities.



Polarimetric Interferometry

• Polarimetry is possible because antennas are polarized – their 
output is not a function of I alone.  

• It is highly desirable (but not required) that the two outputs be 
sensitive to two orthogonal modes (i.e. linear, or circular).

• In interferometry, we have two antennas, each with two differently 
polarized outputs.  

• We can then form four complex correlations.  
• What is the relation between these four correlations and the four 

Stokes’ parameters?

Polarizer RCPLCP

Our Generic Sensor



Four Complex Correlations 
per Pair of Antennas

• Two antennas, each 
with two differently 
polarized outputs, 
produce four complex 
correlations.  

• From these four 
outputs, we want to 
generate the four 
complex visibilities,  I, 
Q, U, and V

L1R1

X X X X

L2R2

Antenna 1 Antenna 2

RR1R2 RR1L2 RL1R2 RL1L2

(feeds)

(polarizer)

(signal
transmission)

(complex 
correlators)



Relating the Products to Stokes’ Visibilities

• Let  ER1, EL1, ER2 and EL2 be the complex representation 
(phasors) of the RCP and LCP components of the EM wave 
which arrives at the two antennas.

• We can then utilize the definitions earlier given to show that the 
four complex correlations between these fields are related to the 
desired visibilities by (ignoring gain factors):

• So, if each antenna has two outputs whose voltages are faithful 
replicas of the EM wave’s RCP and LCP components, then the 
simple equations shown are sufficient. 

• (I’ve ignored gain factors here!)  



Solving for Stokes Visibilities

• The solutions are straighforward:

• Normally, Q, U, and V are much smaller than I (low polarization).  
• Thus, the amplitudes of the cross-hand correlations are much 

less than the parallel hand correlations.  
• V is formed from the difference of two large quantities, while Q 

and U are formed from the sum and difference of small 
quantities.  

• If calibration errors dominate (and they often do), the circular 
basis favors measurements of linear polarization.



For Linearly Polarized Antennas …

• We can go through the same exercise with perfectly linearly 
polarized feeds and obtain (presuming they are oriented with the 
vertical feed along a line of constant HA, and again ignoring 
issues of gain):

• For each example, we have four measured quantities and four 
unknowns.  

• The solution for the Stokes visibilities is easy.    



Stokes’ Visibilities for Pure Linear

• Again, the solution in straightforwards:

• We wish life were only so simple …
• We have ignored two realities of life in polarimetry:

• Antennas rotate on the sky (commonly), and
• Antennas are not perfectly polarized (always)



Antenna Rotation -- Circular

• I give (without derivation) how antenna rotation affects the results 
for the situation when all antennas are rotated by an angle ΨP w.r.t. 
the sky:

• For perfectly circularly polarized antennas:  

• The effect of antenna rotation is to simply rotate the RL and LR 
visibilities.  



Antenna Rotation, Linear

• For perfect linearly polarized antennas, rotated at an angle ΨP:

• With easy solution:



Circular vs. Linear

• One of the ongoing debates is the advantages and disadvantages 
of Linear and Circular systems.  

• Point of principle:  For full polarization imaging, both systems must 
provide the same results.  Advantages/disadvantages of each are 
based on points of practicalities.  

• For both systems, Stokes ‘I’ is the sum of the parallel-hands.  
• Stokes ‘V’ is the difference of the crossed hand responses for linear, (good) 

and is the difference of the parallel-hand responses for circular (bad).
• Stokes ‘Q’ and ‘U’ are differences of cross-hand responses for circular (good),  

and differences of parallel hands for linear (bad).  

Circular System                                     Linear System



Circular vs. Linear

• Both systems provide straightforward derivation of the Stokes’ 
visibilities from the four correlations.  

• Making sense of differences of large numbers requires good 
stability and/or good calibration.  

• To do good circular polarization using circular system, or good 
linear polarization with linear system, we need special care and 
special methods to ensure good calibration.  

• But there are practical reasons to use linear:
– Antenna polarizers are natively linear – extra components are needed for 

circular. This hurts performance.
– These extra components are also generally of narrower bandwidth – it’s 

harder to build circular systems with really wide bandwidth.
– At mm wavelengths, the needed phase shifters are not available. 

• One important practical reason for circular:  
– Nearly all of our calibrator sources are linearly polarized – making calibration 

of linear systems much more compllicated.



Calibration Troubles …

• To understand this last point, note that for the linear system:

• To calibrate means to solve for the GV and GH terms.
• Easy if you know in advance Q and U – (and best if the source 

has no Q or U at all!).  But often you don’t know these.  
• Meanwhile, for circular:

• Now we have *no* sensitivity to Q or U (good!).  Instead, we have 
a sensitivity to V.

• But as it turns out – V is nearly always negligible for the 1000-
odd sources that we use as standard calibrators.  



Polarization of Real Antennas

• Unfortunately, antennas never provide perfectly orthogonal 
outputs.

• In general, the two outputs from an antenna are elliptically 
polarized.

Polarizerq p

• Note that the antenna polarization will be a 
function of direction.  

• Reciprocity:   An antenna transmits the 
same polarization that it receives.

pp

q

q



Relating Output Voltages to Input Fields

• The Stokes visibilities we want are defined in terms 
of the complex cross-correlations (coherencies) of 
electric fields:  e.g.  <ER1E*R2>

• The quantities provided by the antenna are voltages, 
so what we get from our correlator are quantities 
like: <VR1V*R2>

• Furthermore, in a real system, VR isn’t uniquely 
dependent upon ER – it’s a function of both 
polarizations and some gain factors: 

• We now develop a formalism to handle this general 
case.  



 Jones Matrix Algebra

• The analysis of how a real interferometer, comprising real 
antennas and real electronics, is greatly facilitated through use of 
Jones matrices.  

• In this, we break up our general system into a series of 4-port 
components, each of which is presumed to be linear.

• We consider each component to have two inputs and two 
outputs:

• And write:

• Or, in shorthand           V’ = JV
• The four G components of the Jones matrix describe the linkages 

within the ‘grey box’.  

VR

VL

V’R

V’L



Example Jones Matrices

• Each component of the overall system, including propagation 
effects, can be represented by a Jones matrix.  

• These matrices can then be multiplied to obtain a ‘system Jones’ 
matrix.  

• Examples (in a circular basis):
– Faraday rotation by a magnetized plasma:

– Atmospheric attenuation and phase retardation:

– Antenna rotated by angle ΨP 

– An imperfect polarizer (components are complex)

– Post-polarizer electronic gains (complex):



The System Jones Matrix

• Now imagine a simple model, comprising of an antenna oriented 
at some angle ΨP to the sky, feeding an imperfect polarizer, 
followed by post-polarizer electronic gains.  

• For this system, the output voltage (column vector) is related to 
the input electric fields by:

• Multiplying the various Jones matrices, we find

• We can now perform the complex cross-multiplies, and express 
the result in terms of the Stokes visibilities.  

• One could do this serially (four products, with 16 combinations of 
the coefficients), or we can utilize matrix algebra.  

• This operation, applied to matrices, is called the ‘outer product’. 



Definition of the Outer (Kronecker) Product

• Each element of the first matrix is expanded to four elements, 
formed from multiplication with the four elements of the second:

• Similarly, for row vectors, we have:



When applied to our simple model:

• We have

• This is, from a property of outer products:

• Which I write as:

Where  R = the response vector – the correlator output.  
             G = the gain matrix – effect of post-polarizer amplifiers
             P = the polarization mixing matrix (Mueller matrix)
             Ψ = the antenna rotation matrix (can include propagation)
             S = the Stokes vector – what we want.  



The various terms are:

• Response Vector, R:

• Gain Matrix, G:

• Polarization Matrix, P:  



Terms, continued …

• Rotation Matrix, Ψ:

• Stokes Vector, S:

• <Whew!>  Almost there.  
• It gets easier from here …



Inverting the Polarization Equation
• We have, for the relation between the correlator output and the 

Stokes visibility:

• The solution for S is trivial to write:

• The inverses for the rotation and gain matrices are trivial.  
• More interesting is P-1:

Where  K is a normalizing factor:  



Obtaining the Stokes Visibilities

• All this shows that – in principle – the four complex 
outputs from an interferometer can be easily inverted 
to obtain the desired Stokes visibilities.  

• Sadly, it’s not quite that easy.  To correctly invert, we 
need to know all the factors in the Jones matrices.  

• In fact we do not, because …
– Atmospheric gains are continually changing.
– System gains change (but hopefully more slowly).
– Antennas rotate on the sky (but we think we know this in 

advance …)
– Antenna polarization may change (but probably very slowly)
– Standard calibration techniques do not provide the correct 

values of C and S, but rather values relative to one antenna.    



The Physical Meaning …

• To understand the meaning of the C and S terms, consider the 
antenna in ‘transmission’ mode.  

• One can show (problem for the student!) that the elements in the 
polarization matrix are determined by the antenna’s polarization, 
with:

• The β term is the deviation of the antenna polarization ellipse from 
perfectly circular.

• The χ term is the antenna’s ellipticity
• The φ term is the position angle of the antenna’s polarization ellipse, 

in the antenna frame.  
• You can, by substituting the terms above into the polarization 

matrix, and including the antenna rotation terms, show that:



The response of one of the four correlations:

Rpq is the complex output from the interferometer, for polarizations
 p and q from antennas 1 and 2, respectively.
Ψ and χ are the antenna polarization major axis and ellipticity for 
 polarizations p and q.  
I,Q, U, and V are the Stokes Visibilities 
Gpq is a complex gain, including the effects of transmission and electronics 

This is the famous expression derived by Morris, Radhakrishnan and Seielstad 
(1964), relating the output of a single complex correlator to the complex Stokes 
visibilities, where the antenna effects are described in terms of the polarization 
ellipses of the two antennas.



Application:  Nearly Perfect Antennas

• I finish up with a description of how to handle 
imperfectly polarized antennas.  

• First consider circularly polarized systems, and 
assume our engineers can produce polarizers which 
are ‘nearly perfect’.  

• Then, the `C’ terms are of nearly unit amplitude, and 
are very steady in time.  

• We can then factor them out of the Mueller matrix, and 
consider them as part of the gain calibration.  

• If we define the D-term as:  D = C/S, then we a form 
very familiar to many ‘old hands’:



Slightly Imperfect Circularly Polarized Antennas

Where:

• If |D|<<1, we can then ignore D*D products.
• Furthermore, as |Q| and |U| << |I|, we can ignore products 

between them and the Ds.
• And V can be safely assumed to be zero.
• These (very reasonable) approximations then give us:



‘Nearly’ Circular Feeds 
(small D approximation)

• We get:

• Our problem is now clear.  The desired cross-hand responses 
are contaminated by a term proportional to ‘I’.  

• Stokes ‘I’ is typically 20 to 100 times the magnitude of ‘Q’ or 
‘U’.  

• If the ‘D’ terms are of order a few percent (and they are!), we 
must make allowance for the extra terms.  

• To do accurate polarimetry, we must determine these D-terms, 
and remove their contribution.  

• Knowing the D-terms, one can easily modify the Rs to their 
correct values.  



Nearly Perfectly Linear Feeds

• In this case, assume that the ellipticity is very small (χ << 1), and 
that the two feeds (‘dipoles’) are nearly perfectly orthogonal.  

• We then define a *different* set of D-terms:

• The angles ϕY and ϕX are the angular offsets from the exact 
horizontal and vertical orientations, w.r.t. the antenna.  

• The situation is the same as for the circular system.  



Measuring Cross-Polarization

• Correction of the X-hand response for the ‘leakage’ is important, since 
the leakage amplitude is comparable to the fractional polarization.

• There are two ways to proceed:
1. Observe a calibrator source of known polarization (preferably zero!)
2. Observe a calibrator of unknown polarization for a ‘long time’.  

• First case (with polarization = 0).

• Then a single observation should suffice to measure the leakage 
terms.  

• This is not actually correct – because the cross-hand visibility is 
always the sum of two terms, the ‘D’ values must be referenced to 
an assumed value (DV1 = 0, for example).



Determining Source and Antenna Polarizations

• You can determine both the (relative) D terms and the calibrator 
polarizations for an alt-az antenna by observing over a wide 
range of parallactic angle.  (Conway and Kronberg invented this)

• As time passes, ΨP changes in a known way.
• The source polarization term then rotates w.r.t. the antenna leakage 

term, allowing a separation.    



Relative vs. Absolute D terms

• For both linear and circular systems, the standard methodology 
only provides a ‘relative’ D term.  

• This is O.K. for most polarimetry, using the linear approximations 
employed here to simplify the equations.

• For highly polarized sources, or highly polarized antennas, this 
methodology will fail.  

• Absolute D terms will be needed for accurate polarimetry.  
• Obtaining these is not easy – the best method is to rotate one 

antenna in the array by 90 degrees about an axis pointing to an 
unpolarized source.  (See EVLA Memo 131 for details). 

• For VLA, we can physically rotate the feed at some bands.  
• ASKAP can rotate the whole antenna upon demand!  (Whoever 

designed this in deserves a star award!).  
• With absolute D terms, one can properly invert the full mixing 

matrix.  



Illustrative Example – Thermal Emission from Mars

• Mars emits in the radio as a black body. 
• Shown are false-color coded I,Q,U,P images from Jan 2006 data at 

23.4 GHz.
• V is not shown – all noise – no circular polarization.  
• Resolution is 3.5”, Mars’ diameter is ~6”.  
• From the Q and U images alone, we can deduce the polarization is 

radial, around the limb.  
• Position Angle image not usefully viewed in color.

I Q UU P



I,Q,U,V Visibilities

• It’s useful to look at the visibilities which made these 
images.  

             I                                   Q

Amplitude

Phase



Mars – A Traditional Representation

• Here, I, Q, and U are 
combined to make a more 
realizable map of the total 
and linearly polarized 
emission from Mars.  

• The dashes show the 
direction of the E-field. 

• The dash length is 
proportional to the 
polarized intensity.

• One could add the V 
components, to show little 
ellipses to represent the 
polarization at every point.  



How Well Does This Work? 
3C147, a strong unpolarized source … 

Peak = 21241 mJy, σ = 0.21 mJy

Max background object = 24 mJy

Peak = 4 mJy, σ = 0.8 mJy

Peak at 0.02% level – but not noise 
limited!

I Q



3C287 at 1465 MHZ
 I and V with the VLA

Peak = 6982 mJy, σ = 0.21 mJy
Max Bckg. Obj. = 87 mJy

Peak = 6 mJy, σ = 0.16 mJy
Background sources falsely polarized.  

False V 5%

9%

I V



A Summary

• Polarimetry is a little complicated.  
• But, the polarized state of the radiation gives valuable 

information into the physics of the emission.
• Well designed systems are stable, and have low 

cross-polarization, making correction relatively 
straightforward.

• Such systems easily allow estimation of polarization to 
an accuracy of 1 part in 10000.  

• Beam-induced polarization can be corrected in 
software – development is under way.  


