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My Apologies, Up Front

This lecture contains some difficult material.

It is *impossible* to adequately convey this material in
/5 minutes!

So this lecture will only hit the ‘high points’, and makes
extensive use of figures and diagrams.

Many good references:
— Born and Wolf: ‘Principle of Optics’, Chapters 1 and 10

— Rolfs and Wilson: ‘Tools of Radio Astronomy’, Chapter 2

— Thompson, Moran and Swenson: ‘Interferometry and
Synthesis in Radio Astronomy’, Chapter 4

— Tinbergen: ‘Astronomical Polarimetry’. All Chapters.

Great care must be taken in studying these —
conventions vary between them.



Why Measure Polarization”?

* |In short — to access extra physics not available in total
iIntensity alone.

« Examples:

— Processes which generate polarized radiation:

e Synchrotron emission: Up to ~80% linearly polarized, with no
circular polarization. Measurement provides information on
strength and orientation of magnetic fields, level of turbulence.

 Zeeman line splitting: Presence of B-field splits RCP and LCP
components of spectral lines by 2.8 Hz/uG. Measurement

provides direct measure of B-field.
— Processes which modify polarization state:

 Faraday rotation: Magneto-ionic region rotates plane of linear
polarization. Measurement of rotation gives B-field estimate.

* Free electron scattering: Induces a linear polarization which
can indicate the origin of the scattered radiation.



Example: Linear Polarization of Cygnus A

« VLA@ 8.5 GHz B-vectors Perley & Carilli (1996)
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Example: Faraday Rotation for Cygnus A

— Color-coded map of the Rotation Measure — the slope of Faraday

Rotation vs. A2

— RMis proportional to the density-weighted longitudinal B-field,

imbedded in the cluster gas surrounding the radio source.

| . ] . | . | , | . ] . |

Dreher,
Carilli
and Perley
(1987)



Example: Zeeman effect

Spectral line profiles
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What is Polarization?

Electromagnetic field is a vector phenomenon — it has
both direction and magnitude.

From Maxwell’'s equations, we know a propagating EM
wave (in the far field) has no component in the direction
of propagation — it is a transverse wave:

keE=0
Hence, in a coordinate frame with the (z) axis oriented
along the direction of propagation, E, = 0.

The characteristics of the independent transverse
components (E,, E,) of the electric field are referred to

as the polarization properties.



The Polarization Ellipse

We consider the time behavior of the E-field in a fixed
perpendicular plane, with the z-axis directed along the
direction of propagation towards the observer.

For a monochromatic wave of frequency v, we can write
E_=A_cos(2mvut+0,)
E, =4, cos(2mut+0,)

These two equations describe an ellipse in the (X-Y) plane:

E_\ \2 E E
Gar

_22x 7 cosd =sin’d
J/) Ax AJ’

The ellipse is described by three parameters:

— The amplitudes A,, A,, and

— The phase difference, 6 = 5, — 9,




Elliptically Polarized Monochromatic Wave

According to Maxwell’s

' ' ' I
equations, an EM wave is 1 y
. . . B A
elliptically polarized. os|- ’ A >
B / A

0.6

In general, three parameters o )
are needed to describe the | i

. 02 T o N ASEpTE NN, E,
ellipse. : 7 ‘ /

« A, — X-axis amplitude max i~ -

. A, —Y-axis amplitude max .. /

- a=atan(A/A,) —an angle
describing the orientation

0.4

0.6

B /
If the E vector is rotating: 081
« Clockwise, the wave is Left |
Elliptically Polarized: I T T T —

 Anti-clockwise, the wave is
Right Elliptically Polarized.




In a more Natural Reference Frame

A more natural description is in a

frame (&,n), rotated so the E-axis !

lies along the major axis of the os|-
ellipse. [

The three parameters of the
ellipse are then:

_ An : the major axis length

— W: the position angle of this
major axis, and 02

— tany-= Ag/An : the axial ratio 04

0.6 —

0.4 —

It can be shown that:
tan 2W = tan 2o cosO

sin 2)( = SiIl 20 Sil’lé -15 ' -1 ' 05 ' 0 ' 0.5 ' 1

The ellipticity y is signed:
v > 0 => LEP (clockwise)
v < 0 => REP (anti-clockwise)



Alternate Description — The Circular Basis

 We can decompose the E-field into a circular basis, rather than a
cartesian one:

E=A,e,+4,e,

— where Ag and A, are the amplitudes of two counter-rotating unit
vectors: ey, (rotating counter-clockwise), and e, (rotating
clockwise)

* The polarization ellipse is again described by three parameters

A = %\/Aj( + A’ —2A4 A sind

A = %\/A; + A +2A A sind
24 A cosd,,
A - A

x y

tano, =



Circular Basis Example

The polarization ellipse
(black) can be
decomposed into an X-
component of amplitude 2,
and a Y-component of
amplitude 1 which lags by
Ya turn.

It can alternatively be
decomposed into a
counterclockwise (RCP)
rotating vector of length 1.5
(red), and a clockwise
rotating (LCP) vector of
length 0.5 (blue).
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Stokes Parameters

Three parameters are sufficient to describe the monochromatic
EM wave properties.

It is most convenient to have the three parameters share the
same units, and have easily grasped physical meanings.

It is standard in radio astronomy to utilize the parameters
defined by George Stokes (1852), and introduced to astronomy
by Chandrasekhar (1946):

[=A4,+A =A; + A
O=A, -4 =2A4,4, cosd,,
U=2A4,A4,c080,, =2A4,A4, sind,,
V=2A4,4,sind ,, = A; - A;

Note that 72 = Qz LU 412

Thus — a monochromatic wave is 100% polarized.



Interpreting the Meaning of |, V, Q, and U

I = Aj +Ay2 = A}% + A]% | is the total power.

« Vs the difference between the

V=A -4 power in RCP and LCP
components.
* Qs the difference between vertical
0=4; -4,

and horizontal power.

U=24 4 cosd « U is the difference betwe_en
xSy XY orthogonal components in a frame
rotated by 45 degrees

« If V=0, the wave is 100% Linearly Polarized
 If Q=U=0, the wave is 100% Circularly Polarized
* In general, the wave is Elliptically Polarized



Pure Linear Polarization: V=0

* Presume a linearly polarized wave, of unit power.
 Then, if: ‘

— The wave is vertically polarized:
Q=1 U=0

— The wave is horizontally polarized:
e Q=-1 U=0

— The wave is polarized at pa = 45 deg:

+ Q=0 U=1

— The wave is polarized at pa = -45.
+ Q=0 U=-1



Linear Polarization (Q, U)

* In general, we define:
— The Linearly Polarized Intensity:

p=\/Qz+U2

— The orientation of the plane of polarization:

tan2yp =U/Q

— Signs of Q and U tell us the orientation of the plane of polarization:

U<o0 Uu>0




In General: Some lllustrative Examples

Pol Ellipse I Vv Q U
1Q 1 1 0 0
TO 1 -1 0 0
| 1 0 1 0
S 1 0 -1 0
/ 1 0 0 -1
\ 1 0 0 1
| OO 1 /42 -1/+2 °
tQ 1 ~1/42 2 1/42




Non-Monochromatic Radiation, and Partial Polarization

Monochromatic radiation is nonphysical.

No such condition can exist (although it can be closely
approximated).

In real life, radiation has a finite bandwidth Av — the
signals are quasi-sinusoidal, specified by an amplitude
and phase for a limited time t~1/ Av.

Because the amplitudes and phases of the received
signals are now variable, there are no unique,
stationary values of amplitude and phase.

We must then use suitably defined averages of these
quantities to define the polarization characteristics.



Stokes Parameters

* In the quasi-monochromatic approximation, the incoming EM
wave can be described, for a period At~1/Av, by two

amplitudes, A, and A, and a phase difference, 3.

« The two amplitudes describe the electric field amplitudes of the
two independent orthogonal states of the radiation.

. Eg\r/g:\e orthogonal linear, and opposite circular bases, we
I=(4)+(4)  =(4)+{4)
0={L)-(4) =(24,4,c08d,,)

U =(24,A4,¢08d ) = (24,4, sind, )
V = (24,4, 508, ) =(43) - (4])

« The angle brackets <> denote an average over a time much longer
than the coherence time 1/Av.

* These four real numbers are a complete description of the polarization
state of the incoming radiation.

» They are a function of frequency, position, and time.



Stokes Visibilities

Recall the earlier lectures, where we defined the Visibility, V(u,v),
and showed its relation to the sky brightness:

V(u,v) @ [ (I,m) (aFourier Transform Pair)
In our derivation, we were deliberately vague about what this

brightness was.

We will now be more formal, and consider the true brightness
distributions for I, Q, U, and V.

Define the Stokes Visibilities |, Q, U, and V, to be the Fourier
Transforms of these brightness distributions.

Then, the relations between these are:

| ], Q@ Q U @mU V eV

Stokes Visibilities are complex functions of (u,v), while the Stokes
Images are real functions of (I,m).

Our task is now to measure these Stokes visibilities.



Polarimetric Interferometry

Polarimetry is possible because antennas are polarized — their
output is not a function of | alone.

It is highly desirable (but not required) that the two outputs be
sensitive to two orthogonal modes (i.e. linear, or circular).

‘ <—— Qur Generic Sensor

LCP <« Polarizer > Rl

In interferometry, we have two antennas, each with two differently
polarized outputs.

We can then form four complex correlations.

What is the relation between these four correlations and the four
Stokes’ parameters?



Four Complex Correlations

per Pair of Antennas

Two antennas, each
with two differently
polarized outputs,
produce four complex
correlations.

From these four
outputs, we want to
generate the four
complex visibilities, |,
Q, U,and V

Antenna 1

R1 L1

X

4
RR1R2

X

\4

RR1 L2

X

\4

RL1 R2

Antenna 2

R2

L2

X

4
RL1L2

(feeds)

(polarizer)

(signal

transmission)

(complex
correlators)



Relating the Products to Stokes’ Visibilities

Let Eg,, E 4, Eg, @and E, be the complex representation

(phasors) of the RCP and LCP components of the EM wave
which arrives at the two antennas.

We can then utilize the definitions earlier given to show that the
four complex correlations between these fields are related to the
desired visibilities by (ignoring gain factors):

Rugy = (ExiEry) = (1 +V)/2
Ry, =(ELEp,)=(1 =V)/2
Rupr =(EnEr, )= (Q+iU)/2
Rypy =(EEpy) = (Q-iU)/2
So, if each antenna has two outputs whose voltages are faithful

replicas of the EM wave’s RCP and LCP components, then the
simple equations shown are sufficient.

(I've ignored gain factors here!)



Solving for Stokes Visibilities

The solutions are straighforward:

I = RR1R2 + RL1L2
V=R -R .
Q=R,,.+R,.
U=-i(R,,.-R,,)

Normally, Q, U, and V are much smaller than | (low polarization).
Thus, the amplitudes of the cross-hand correlations are much

less than the parallel hand correlations.

V is formed from the difference of two large quantities, while Q
and U are formed from the sum and difference of small

quantities.

If calibration errors dominate (and they often do), the circular

basis favors measurements of linear polarization.



For Linearly Polarized Antennas ...

 We can go through the same exercise with perfectly linearly
polarized feeds and obtain (presuming they are oriented with the
vertical feed along a line of constant HA, and again ignoring
issues of gain):

Ryys =(EypEpy)=(1 +Q)/2

Ry =(EmEpy) = (1 —Q)/2
Ry = (EpEpy) = (U +iV)/2
Rys =(EiEy,) = (U =iV)/2

 For each example, we have four measured quantities and four
unknowns.

« The solution for the Stokes visibilities is easy.



Stokes’ Visibilities for Pure Linear

« Again, the solution in straightforwards:

I = RVIVZ + RHIHZ
Q = RV1V2 - RH1H2
U = RV1H2 + RH1V2

V = _i(RV1H2 — RH1V2)

« We wish life were only so simple ...

* We have ignored two realities of life in polarimetry:
* Antennas rotate on the sky (commonly), and
« Antennas are not perfectly polarized (always)



Antenna Rotation -- Circular

« | give (without derivation) how antenna rotation affects the results
for the situation when all antennas are rotated by an angle W, w.r.t.

the sky:
 For perfectly circularly polarized antennas:

R = +V)/2 | =R +R
R =1 =V)/2 V=R,,-R,,

R .=(Q+iU)e™ /2 Q=R _e™ +R _e™
R..=Q-iW)e™ /2 U=i(R,.e™" ~R,.e™)

* The effect of antenna rotation is to simply rotate the RL and LR
visibilities.



Antenna Rotation, Linear

- For perfect linearly polarized antennas, rotated at an angle W:

R . =( +Qcos2¥, + Usin2W,)/2
= (I —Qcos2W, -Usin2W¥))/2
= (-Qsin2%, + U cos2W, +iV)/2
= (-Qsin2W, + U cos2W, -iV)/2

H1H2
V1H2

H1V2

« With easy solution:

| = RV1V2 + RHle)
Q (RV1V2 H1H?2 )COS 2‘P (RVIHZ H1V 2 )Sln ZlP
U (RV1V2 H1H?2 )Sln ZLII (RV1H2 H1V2 )COS 2111

= Z(RH1V2 — RVIHZ)



Circular vs. Linear

« One of the ongoing debates is the advantages and disadvantages
of Linear and Circular systems.

» Point of principle: For full polarization imaging, both systems must
provide the same results. Advantages/disadvantages of each are
based on points of practicalities.

Circular System Linear System

I = RR1R2 + RLILZ | = RV1V2 + RH1H2

V= RR1R2 - RL1L2 V= i(RHle - RVIHZ)

Q= einRRle + e_WPRLle Q= (RV1V2 - RH1H2 )COS lep - (RV1H2 + RH1V2 )Sin 211JP
U = i(e_izlPPRLmz - eizlPPRlez ) U = (RVIVZ - RH1H2 )Sin 2qu + (RVIHZ + RHIVZ )COS 2IIIP

» For both systems, Stokes ‘I’ is the sum of the parallel-hands.

» Stokes V' is the difference of the crossed hand responses for linear, (good)
and is the difference of the parallel-hand responses for circular (bad).

« Stokes ‘Q" and ‘U’ are differences of cross-hand responses for circular (good),
and differences of parallel hands for linear (bad).



Circular vs. Linear

Both systems provide straightforward derivation of the Stokes’
visibilities from the four correlations.

Making sense of differences of large numbers requires good
stability and/or good calibration.

To do good circular polarization using circular system, or good
linear polarization with linear system, we need special care and
special methods to ensure good calibration.

But there are practical reasons to use linear:

— Antenna polarizers are natively linear — extra components are needed for
circular. This hurts performance.

— These extra components are also generally of narrower bandwidth — it’s
harder to build circular systems with really wide bandwidth.

— At mm wavelengths, the needed phase shifters are not available.
One important practical reason for circular:

— Nearly all of our calibrator sources are linearly polarized — making calibration
of linear systems much more compllicated.



Calibration Troubles ...

To understand this last point, note that for the linear system:
R =G G (I +Qcos2W, + Usin2W,)/2

Viv?2 V1 V2

R =G, G (I —Qcos2W¥W, —Usin2W,)/2

H1H?2 H1 H?2

To calibrate means to solve for the G,, and G terms.

Easy if you know in advance Q and U — (and best if the source
has no Q or U at all!). But often you don’t know these.
Meanwhile, for circular:

R =G G.(I +V)/2

R1R2 R1 R2

R =G G.( =V)/2

L1L2 L1 L2

Now we have *no* sensitivity to Q or U (good!). Instead, we have
a sensitivity to V.

But as it turns out — V is nearly always negligible for the 1000-
odd sources that we use as standard calibrators.



Polarization of Real Antennas

Unfortunately, antennas never provide perfectly orthogonal
outputs.

In general, the two outputs from an antenna are elliptically
polarized.

* Note that the antenna polarization will be a

‘Polar' er‘ function of direction.
9 ’ ' P « Reciprocity: An antenna transmits the
same polarization that it receives.




Relating Output Voltages to Input Fields

The Stokes visibilities we want are defined in terms
of the complex cross-correlations (coherencies) of
electric fields: e.g. <EgxE*r,>

The quantities provided by the antenna are voltages,
so what we get from our correlator are quantities
like: <Vg,V*ro>

Furthermore, in a real system, V isn't uniquely
dependent upon E; — it's a function of both
polarizations and some gain factors:

VR = GR (CRRER + SLREL)

We now develop a formalism to handle this general
case.



Jones Matrix Algebra

The analysis of how a real interferometer, comprising real
antennas and real electronics, is greatly facilitated through use of
Jones matrices.

In this, we break up our general system into a series of 4-port
components, each of which is presumed to be linear.

We consider each component to have two inputs and two
outputs:

Ve = mssisA V'r
V, e el vy
And write:
VR' \7= GRR GLR l VR \_
VL' /_ GRL GLL 7 VL /_
Or, in shorthand V' =JV

The four G components of the Jones matrix describe the linkages
within the ‘grey box'.



Example Jones Matrices

Each component of the overall system, including propagation
effects, can be represented by a Jones matrix.

These matrices can then be multiplied to obtain a ‘system Jones
matrix.

Examples (in a circular basis):

— Faraday rotation by a magnetized plasma: e’ 0 \_
0 ei"’LT
— Atmospheric attenuation and phase retardation: ae® 0 \_
0 cxeiq’j
— Antenna rotated by angle W, e Q \—
0 ey
— An imperfect polarizer (components are complex) Cre SLR\_
SRL CLL/_

— Post-polarizer electronic gains (complex): (GR 0)



The System Jones Matrix

Now imagine a simple model, comprising of an antenna oriented
at some angle W, to the sky, feeding an imperfect polarizer,

followed by post-polarizer electronic gains.

For this system, the output voltage (column vector) is related to
the input electric fields by:

v=JJ J E=J _E

pol™ rot ant

Multiplying the various Jones matrices, we find

Vi \_= GRCRRe_iIPP GRSLReilPP \ Ly \_
V, }_ GLSRLe_ilPP GLCLLeilPP / E, /_
We can now perform the complex cross-multiplies, and express

the result in terms of the Stokes visibilities.

One could do this serially (four products, with 16 combinations of
the coefficients), or we can utilize matrix algebra.

This operation, applied to matrices, is called the ‘outer product'.



Definition of the Outer (Kronecker) Product

» Each element of the first matrix is expanded to four elements,
formed from multiplication with the four elements of the second:

%k % % k
(@l @ty @l Tty \_
% % k % %
2 a12\® b, blz\__ aynb, a;by, anb,  a,by, +
* -~ b* b* b* b* -
]| @b @b Anby Apby,
% % *

* =
\a21b21 y by, ayb;, azzbzz/

 Similarly, for row vectors, we have:

(albl*l
(al \T® (bl*\l_= alb; +
a, | b;}_ azbl*:
(@b, ]




When applied to our simple model:

+ Wehave R=V,®V, =(J, E)®(, .E,)

antl

 This is, from a property of outer products:

R = (JGI ® J:}'Z)(Jpoll ® J;012)(J‘P1 ® J:;Z)(El @ E;)

 Which | write as: R=G><P>@>S

Where R = the response vector — the correlator output.
G = the gain matrix — effect of post-polarizer amplifiers
P = the polarization mixing matrix (Mueller matrix)
W = the antenna rotation matrix (can include propagation)
S = the Stokes vector — what we want.



The various terms are:

“n O «r» O
—l kA= X 5.3 3

~ (@\| o (@ o
G * > * M * M * M
SR CI)
N m 3 M ~
. ofe ofe ofe ofe g R L L L L
\\IU_\_U_\_/V.// o o Gm o n O 0
*Vm *VM *VR *VL G o M o o
SRS Vm Vu *Sm *CL » 5% 3
I - Gm o O CR CR SR SR

a2
Gl o O O Cl = Cl Sl
GR M < wun M
O O unn

* Response Vector, R:
* Polarization Matrix, P:

e Gain Matrix, G:



Terms, continued ...

o~ (Yri~¥e2) 0
- Rotation Matrix, ¥: o- g e‘i(‘P’;)‘*‘I’Lz)
0 0
(I +V)/2 \
 Stokes Vector, S: S - (Q+iU)/2.
(V-iU)/2*
(I -V)/27

* <Whew!> Almost there.
* |t gets easier from here ...

0
0

ei(lPLl"'lPRz)

0

0
0
0

ei(lle_lPLz)

S~ o o —



Inverting the Polarization Equation
* We have, for the relation between the correlator output and the

Stokes visibility:
R=GxP X
« The solution for S is trivial to write:
-1 -1 -1
S=0" xP G xR
« The inverses for the rotation and gain matrices are trivial.
* More interesting is P-1:

%k %k L3
i CLL1CLL2 CLLlsLRz - SLRICLLZ SLRISLRz \l_
% % % %
— CLLISRL2 CLLICRRZ SLRISRL2 — SLRICRR2 =
% % % % -
- SRLICLL2 SRLISLR2 CRRICLL2 - CRRISLR2 -~
%

*

\ SRLIS;LZ —SriCrrz — CrriSrrz CRRIC;;RZ /_

1
(CRRICLLI - SLRISRLI XC;RZCLL2 SLR2SRL2 )

Where K is a normalizing factor: K =



Obtaining the Stokes Visibilities

 All this shows that — in principle — the four complex
outputs from an interferometer can be easily inverted
to obtain the desired Stokes visibilities.

« Sadly, it's not quite that easy. To correctly invert, we
need to know all the factors in the Jones matrices.

* |n fact we do not, because ...

Atmospheric gains are continually changing.
System gains change (but hopefully more slowly).

Antennas rotate on the sky (but we think we know this in
advance ...)

Antenna polarization may change (but probably very slowly)

Standard calibration techniques do not provide the correct
values of C and S, but rather values relative to one antenna.



The Physical Meaning ...

« To understand the meaning of the C and S terms, consider the
antenna in ‘transmission’ mode.

* One can show (problem for the student!) that the elements in the
polarization matrix are determined by the antenna’s polarization,
with: C. = cosp e

C, =cosf, e Pr=Xp+m/4

S, =sin B €' P,=m/4-%,

S, =sinp, e

« The § term is the deviation of the antenna polarization ellipse from

perfectly circular.
« The y term is the antenna’s ellipticity
« The ¢ term is the position angle of the antenna’s polarization ellipse,
in the antenna frame.
* You can, by substituting the terms above into the polarization
matrix, and including the antenna rotation terms, show that:



The response of one of the four correlations:

R, =G, {[cos(W,-W )cos(x,—x,)+isin(W, —-W )sin(y, +x )]l /2
+[cos(W, + W, )cos(x, +x,)+isin(¥, +W )sin(y, —x,)]Q/2
—i[cos(W, + W )sin(y , —x,) +isin(W, + W )cos(y , +x,)]U/2
~[cos(W, =W )sin(y, +x, ) +isin(¥, - )cos(x, - x,)IV/2}

This is the famous expression derived by Morris, Radhakrishnan and Seielstad
(1964), relating the output of a single complex correlator to the complex Stokes
visibilities, where the antenna effects are described in terms of the polarization
ellipses of the two antennas.

is the complex output from the interferometer, for polarizations
p and g from antennas 1 and 2, respectively.
WP and y are the antenna polarization major axis and ellipticity for
polarizations p and q.
1,Q, U, and V are the Stokes Visibilities

qu is a complex gain, including the effects of transmission and electronics

qu



Application: Nearly Perfect Antennas

| finish up with a description of how to handle
imperfectly polarized antennas.

First consider circularly polarized systems, and
assume our engineers can produce polarizers which
are ‘nearly perfect'.

Then, the "'C’ terms are of nearly unit amplitude, and
are very steady in time.

We can then factor them out of the Mueller matrix, and
consider them as part of the gain calibration.

If we define the D-term as: D = C/S, then we a form
very familiar to many ‘old hands’:



Slightly Imperfect Circularly Polarized Antennas

RR1R2\| 1 DL*Rz l)LR1 DLRIDZM\ (l + V)/2 \
Rois | Dua 1 D,D,, D, 4e™(Q+ilU)/2.;
R.:| D. D.D. 1 D, je"@-ily2?
R.J \D.D,, D, D, 1 J a-v2 j
Where: D, =tanf ™

_ —i2¢;
D =tanf e

If |D|<<1, we can then ignore D*D products.

Furthermore, as |Q| and |U| << [l|, we can ignore products
between them and the Ds.

And V can be safely assumed to be zero.
These (very reasonable) approximations then give us:



‘Nearly’ Circular Feeds
(small D approximation)

/2
/2
= :(DR1 + D )I +e (Q+ iU )]2
=[(D. +D. ) +e™(Q-iU))2

We get:

RIR2
L1L2

R1L2

~ N RN XD
I

L1R2

Our problem is now clear. The desired cross-hand responses
are contaminated by a term proportional to ‘I'.

Stokes ‘I' is typically 20 to 100 times the magnitude of ‘Q’ or
‘U'.

If the ‘D’ terms are of order a few percent (and they are!), we
must make allowance for the extra terms.

To do accurate polarimetry, we must determine these D-terms,
and remove their contribution.

Knowing the D-terms, one can easily modify the Rs to their
correct values.



Nearly Perfectly Linear Feeds

In this case, assume that the ellipticity is very small (x << 1), and
that the two feeds (‘dipoles’) are nearly perfectly orthogonal.
We then define a *different* set of D-terms:

Dy =@, —ixy
Dy, = -, +iy,

The angles ¢y and gy are the angular offsets from the exact
horizontal and vertical orientations, w.r.t. the antenna.

= (I +Qcos2W¥, + Usin2W))/2
= (I —Qcos2W, —-Usin2W )/2

=[1 (D, +D,)-Qsin2¥, + U cos2W¥, +iV]/2
R =[lI (D, +D)-Qsin2¥, + U cos2W, —iV]/2

* The situation is the same as for the circular system.

V1V2

H1H2

V1H2



Measuring Cross-Polarization

» Correction of the X-hand response for the ‘leakage’ is important, since
the leakage amplitude is comparable to the fractional polarization.
* There are two ways to proceed:
1. Observe a calibrator source of known polarization (preferably zero!)
2. Observe a calibrator of unknown polarization for a ‘long time’.

« First case (with polarization = 0).

R =1/2

Viv?2

R =1/2

RV1H2 = I (DVI +D:[2 )/2
RHIVZ = I (DHI + D;Z )/2

* Then a single observation should suffice to measure the leakage
terms.

 This is not actually correct — because the cross-hand visibility is
always the sum of two terms, the ‘D’ values must be referenced to
an assumed value (D, = 0, for example).



Determining Source and Antenna Polarizations

* You can determine both the (relative) D terms and the calibrator
polarizations for an alt-az antenna by observing over a wide
range of parallactic angle. (Conway and Kronberg invented this)

R,. =D, + D)l +em(Q-iU))2
RR1L2 = I:(DRI + DZZ )I + e—ZilpP (Q + iU ):VZ

- As time passes, W, changes in a known way.

* The source polarization term then rotates w.r.t. the antenna leakage
term, allowing a separation.

e’ (Q +iU )

=

(D, + D)1




Relative vs. Absolute D terms

For both linear and circular systems, the standard methodology
only provides a ‘relative’ D term.

This is O.K. for most polarimetry, using the linear approximations
employed here to simplify the equations.

For highly polarized sources, or highly polarized antennas, this
methodology will fail.

Absolute D terms will be needed for accurate polarimetry.

Obtaining these is not easy — the best method is to rotate one
antenna in the array by 90 degrees about an axis pointing to an
unpolarized source. (See EVLA Memo 131 for details).

For VLA, we can physically rotate the feed at some bands.

ASKAP can rotate the whole antenna upon demand! (Whoever
designed this in deserves a star award!).

With absolute D terms, one can properly invert the full mixing
matrix.



lllustrative Example — Thermal Emission from Mars

CENTER AT RA 25 C 18 ¢
PERK = 9.981 ' CENTER AT R
IMNAME= MARS-K.LGEOM.S PERK = 3

a 15 z 25 3
MILLIJYZEERAM

a A 1a
MILLIJYZEEAM

 Mars emits in the radio as a black body.

« Shown are false-color coded |,Q,U,P images from Jan 2006 data at
23.4 GHz.

* Vs not shown — all noise — no circular polarization.
 Resolution is 3.5”, Mars’ diameter is ~6”.

 From the Q and U images alone, we can deduce the polarization is
radial, around the limb.

» Position Angle image not usefully viewed in color.



,Q,U,V Visibilities

It's useful to look at the visibilities which made these

Images. I
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Mars — A Traditional Representation

Here, |, Q, and U are
combined to make a more
realizable map of the total
and linearly polarized
emission from Mars.

The dashes show the
direction of the E-field.

The dash length is
proportional to the
polarized intensity.

One could add the V
components, to show little
ellipses to represent the

polarization at every point.

DECLINATION

Plot file version 3 created 09-FEB-2006 11:02:19
MARS IPOL 22460.100 MHZ MARS-K.ICLOD1.4

18 02 45 —

40 —

30 —

024913.2 13.0 128 12.6 124 12.2 12.0
RIGHT ASCENSION
Peak contour flux = 9.9738E-01 JY/BEAM
Levs = 9.974E-03 * (-0250, 0250, 0.500, 1, 2,
5, 10, 20, 30, 50, 70, 90)




How Well Does This Work?
3C147, a strong unpolarized source ...

05424498 IPOL 1364.900 MHZ 3C147-LICL001.2
0 2
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Center at RA 054236.138 DEC 4951 07.23 Kilo ARC SEC

Peak = 21241 mJy, o = 0.21 mJy Peak =4 mly, 0= 0.8 mJy

Peak at 0.02% level — but not noise

Max background object = 24 mJy e
limited!



3C287 at 1465 MHZ
| and V with the VLA

13304251 lP(?L 1464.900 MHZ 302372-L-|CL001-5 13304251 VPOL 1464.900 MHZ 3C287-L.VCL001.1
0

4 2 4
' B ' B
| | | | | T I T T T
1.0 — - 1.0 i
05 — - 0.5 — —
2 4 g
(0] . 1]
Q O
< L -
g 9o L] = o 00— i
X x
: 5%
5 0
8 = 05 — o
o5 ERERIN False V_es ",
- ¢ 9% d
TR e T s i A il S AT T S R S P A
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s 0'2Kilo R'Sc sn;of':2 il Bl Kilo ARC SEC

Peak = 6982 mJy, 0= 0.21 mJy Peak = 6 mly, 6 = 0.16 mJy
Max Bekg. Obj. = 87 mJy Background sources falsely polarized.



A Summary

Polarimetry is a little complicated.

But, the polarized state of the radiation gives valuable
information into the physics of the emission.

Well designed systems are stable, and have low
cross-polarization, making correction relatively
straightforward.

Such systems easily allow estimation of polarization to
an accuracy of 1 part in 10000.

Beam-induced polarization can be corrected in
software — development is under way.



