Fundamentals of Radio Interferometry

Rick Perley, NRAO/Socorro

Fourth INPE Advanced Course on Astrophysics:
Radio Astronomy in the $21^{\text {st }}$ Century

Topics

- Intensity, Luminosity, Flux, Flux Density, etc.
- The Role of the 'Sensor’ (a.k.a. ‘Antenna’)
- Key Properties of Antennas
- The Need for Interferometry
- The Basic Interferometer

Spectral Flux Density and Brightness

- Our Goal: To measure the characteristics of celestial emission from a given direction s, at a given frequency v, at a given time t.
- In other words: We want a map, or image, of the emission.
- Terminology/Definitions: The quantity we seek is called the brightness (or specific intensity): It is denoted here by $\mathrm{I}(\mathbf{s}, \nu, \mathrm{t})$, and expressed in units of: watt/($\mathrm{m}^{2} \mathrm{~Hz}$ ster).
- It is the power received, per unit solid angle from direction s, per unit collecting area, per unit frequency at frequency v.
- Do not confuse I with Flux Density, S -- the integral of the brightness over a given solid angle:

$$
S=\int I(\mathbf{s}, v, t) d \Omega
$$

- The units of S are: watt $/\left(\mathrm{m}^{2} \mathrm{~Hz}\right)$
- Note: $1 \mathrm{Jy}=10^{-26} \mathrm{watt} /\left(\mathrm{m}^{2} \mathrm{~Hz}\right)$.

An Example - Cygnus A

- I show below an image of Cygnus A at a frequency of 4995 MHz .
- The units of the brightness are Jy/beam, with 1 beam $=0.16 \operatorname{arcsec}^{2}$
- The peak is $2.6 \mathrm{Jy} / \mathrm{beam}$, which equates to $6.5 \times 10^{-15} \mathrm{watt} /\left(\mathrm{m}^{2} \mathrm{~Hz}\right.$ ster)
- The flux density of the source is $370 \mathrm{Jy}=3.7 \times 10^{-24} \mathrm{watt} /\left(\mathrm{m}^{2} \mathrm{~Hz}\right)$

Intensity and Power.

- Imagine a distant source of emission, described by brightness $\mathrm{I}(v, \mathbf{s})$ where \mathbf{s} is a unit direction vector.
- Power from this emission is intercepted by a collector ('sensor') of area $A(v, s)$.
- The power, P (watts) from a small solid angle $\mathrm{d} \Omega$, within a small frequency window $\mathrm{d} v$, is $P=I(\nu, \mathbf{s}) A(\nu, \mathbf{s}) d \nu d \Omega$
- The total power received is an integral over frequency and angle, accounting for variations in the responses.
- A Sensor Area
-dv Filter width
- P Power collected

$$
P=\iint I(v, \mathbf{s}) A(v, \mathbf{s}) d v d \Omega
$$

The Role of the Sensor

- Coherent interferometry is based on the ability to correlate the electric fields measured at spatially separated locations.
- To do this (without mirrors) requires conversion of the electric field $\mathrm{E}(\mathrm{r}, v, \mathrm{t})$ at some place to a voltage $\mathrm{V}(v, \mathrm{t})$ which can be conveyed to a central location for processing.
- For our purpose, the sensor (a.k.a. 'antenna') is simply a device which senses the electric field at some place and converts this to a voltage which faithfully retains the amplitudes and phases of the electric fields.
- One can imagine two kinds of ideal sensors:
- An ‘all-sky’ sensor: All incoming electric fields, from all directions, are uniformly summed.
- The 'limited-field-of-view' sensor: Only the fields from a given direction and solid angle (field of view) are collected and conveyed.
- Sadly - neither of these is possible.

The Role of the Sensor

- Coherent interferometry is based on the ability to correlate the electric fields measured at spatially separated locations.
- To do this (without mirrors) requires conversion of the electric field $\mathrm{E}(\mathrm{r}, v, \mathrm{t})$ at some place to a voltage $\mathrm{V}(v, \mathrm{t})$ which can be conveyed to a central location for processing.
- For our purpose, the sensor (a.k.a. 'antenna') is simply a device which senses the electric field at some place and converts this to a voltage which faithfully retains the amplitudes and phases of the electric fields.

-EM waves in

- Voltage out (preserving amplitude and phase of all input fields)

Antennas - the Single Dish

- Antennas span a wide range - from simple elements with nearly isotropic responses, to major mechanical structures designed for high gain and angular resolution.
- The most common antenna is a parabolic reflector - a 'single dish'.
- Understanding how it works will help in our later discussion of interferometry.
- There are four critical characteristics of sensors (antennas):

1. A directional gain ('main beam')
2. An angular resolution given by: $\theta \sim \lambda / D$.
3. The presence of 'sidelobes' - finite response at angles away from the main beam.

- A basic understanding of the origin of these characteristics will aid in understanding the functioning of an interferometer.

The Parabolic Reflector

Key Point: Distance from incoming phase front to focal point is the same for all rays. The E-fields will thus all be in phase at the focus - the place for the receiver.

The parabola has the remarkable property of directing all rays from in incoming wave front to a single point (the focus), all with the same distance. Hence, all rays arrive at the focus with the same phase.

The Standard Parabolic Antenna Response

- The power response of a uniformly
- illuminated circular parabolic antenna of 25-meter diameter,
- at a frequency of 1 GHz.

Beam Pattern Origin

- An antenna's response is a result of coherent phase summation of the electric field at the focus.
- First null will occur at the angle where one extra
 wavelength of path is added across the full width of the aperture:
$\theta \sim \lambda / D$
(Why?)

Specifics: First Null, and First Sidelobe

- When the phase differential across the aperture is $1,2,3, \ldots$ wavelengths, we get a null in the total received power.
- The nulls appear at (approximately): $\theta=\lambda / D, 2 \lambda / D, 3 \lambda / D$, ... radians.
- When the phase differential across the aperture is $\sim 1.5,2.5$, $3.5, \ldots$ wavelengths, we get a maximum in total received power.
- But, each successive maximum is weaker than the last.
- These maxima appear at (approximately): $\theta=3 \lambda / 2 \mathrm{D}, 5 \lambda /$ 2D, 7ג/2D, ... radians.

Why Interferometry?

- Radio telescopes coherently sum electric fields over an aperture of size D.
- For this, diffraction theory applies - the angular resolution is:
- In 'practical' units:

$$
\theta_{r a d} \approx \lambda / D
$$

$$
\theta_{\mathrm{arcsec}} \approx 2 \lambda_{\mathrm{cm}} / D_{\mathrm{km}}
$$

- To obtain 1 arcsecond resolution at a wavelength of 21 cm , we require an aperture of $\sim 42 \mathrm{~km}$!
- The (currently) largest single, fully-steerable aperture is the 100-m antennas in Bonn, and Green Bank. Nowhere big enough!
- Can we synthesize an aperture of that size with pairs of antennas?
- The methodology of synthesizing a continuous aperture through summations of separated pairs of antennas is called 'aperture synthesis'.

Interferometry - Basic Concept

-We don't need a single parabolic structure!
-We can consider a series of small antennas, whose individual signals are summed in a network.

-This is the basic concept of interferometry.

- Aperture Synthesis is an extension of this concept.

Quasi-Monochromatic Radiation

- Analysis is simplest if the fields are perfectly monochromatic.
- This is not possible - a perfectly monochromatic electric field would both have no power ($\Delta v=0$), and would last forever!
- So we consider instead 'quasi-monochromatic' radiation, where the bandwidth $\mathrm{d} v$ is finite, but very small compared to the frequency: $\Delta v \ll v$
- Consider then the electric fields from a small sold angle $\mathrm{d} \Omega$ about some direction \mathbf{s}, within some small bandwidth $\mathrm{d} v$, at frequency v.
- We can write the temporal dependence of this field as:

$$
E_{v}(t)=E \cos (2 \pi v t+\phi)
$$

- The amplitude and phase remains unchanged to a time duration of order $\mathrm{dt} \sim 1 / \mathrm{d} v$, after which new values of E and ϕ are needed.

Simplifying Assumptions

- We now consider the most basic interferometer, and seek a relation between the characteristics of the product of the voltages from two separated antennas and the distribution of the brightness of the originating source emission.
- To establish the basic relations, the following simplifications are introduced:
- Fixed in space - no rotation or motion
- Quasi-monochromatic
- No frequency conversions (an 'RF interferometer')
- Single polarization
- No propagation distortions (no ionosphere, atmosphere ...)
- Idealized electronics (perfectly linear, perfectly uniform in frequency and direction, perfectly identical for both elements, no added noise, ...)

The Stationary, Quasi-Monochromatic Radio-Frequency Interferometer

- Geometric
- Time Delay
$\tau_{g}=\mathbf{b} . \mathbf{s} / c$
$V_{1}=E \cos \left[\omega\left(t-\tau_{g}\right)\right]$

Pictorial Example: Signals In Phase

- $\quad 2 \mathrm{GHz}$ Frequency, with voltages in phase:

$$
\text { b.s }=n \lambda, \text { or } \tau_{g}=n / \nu
$$

- Antenna 1 Voltage
- Antenna 2

Voltage

- Product

Voltage

- Average

Pictorial Example: Signals in Quad Phase

- 2 GHz Frequency, with voltages in quadrature phase:

$$
\text { b.s }=(n+/-1 / 4) \lambda, \tau_{g}=(4 n+/-1) / 4 v
$$

- Antenna 1 Voltage

- Antenna 2 Voltage

- Product Voltage
- Average

Pictorial Example: Signals out of Phase

- $\quad 2 \mathrm{GHz}$ Frequency, with voltages out of phase:

$$
\text { b. } s=(n+/-1 / 2) \lambda \quad \tau_{g}=(2 n+1-1) / 2 v
$$

- Antenna 1 Voltage
- Antenna 2 Voltage

- Product Voltage

- Average

Some General Comments

- The averaged product R_{C} is dependent on the received power, $\mathrm{P}=\mathrm{E}^{2} / 2$ and geometric delay, τ_{g}, and hence on the baseline orientation and source direction:

$$
R_{C}=P \cos \left(\omega \tau_{g}\right)=P \cos \left(2 \pi \frac{\mathbf{b} \times \mathbf{s}}{\lambda}\right)
$$

- Note that R_{C} is not a a function of:
- The time of the observation -- provided the source itself is not variable!
- The location of the baseline -- provided the emission is in the far-field.
- The actual phase of the incoming signal - the distance of the source does not matter, provided it is in the far-field.
- The strength of the product is dependent on the antenna areas and electronic gains - but these factors can be calibrated for.

Pictorial Illustrations

- To illustrate the response, expand the dot product in one dimension:

$$
\frac{\mathbf{b} \cdot \mathbf{s}}{\lambda}=u \cos \alpha=u \sin \theta=u l
$$

- Here, $\mathbf{u}=\mathbf{b} / \lambda$ is the baseline length in wavelengths, and θ is the angle w.r.t. the plane perpendicular to the baseline.
- $l=\cos \alpha=\sin \theta$ is the direction cosine

- Consider the response R_{c}, as a function of angle, for two different baselines with $\mathrm{u}=10$, and $\mathrm{u}=25$ wavelengths:

$$
R_{C}=\cos (2 \pi u l)
$$

Whole-Sky Response

- Top:

$$
u=10
$$

There are 20 whole fringes over the hemisphere.

- Bottom:

$$
u=25
$$

There are 50 whole fringes over the hemisphere

From an Angular Perspectivê $\cdot \theta$

Top Panel:

- The absolute value of the response for $u=10$, as a function of angle.
- The 'lobes' of the response pattern alternate in sign.

Bottom Panel:

- The same, but for $u=25$.
- Angular separation between lobes (of the same sign) is
- $\delta \theta \sim 1 / u=\lambda / b$ radians.

Hemispheric Pattern

- The preceding plot is a meridional cut through the hemisphere, oriented along the baseline vector.
- In the two-dimensional space, the fringe pattern consists of a series of coaxial cones, oriented along the baseline vector.
- The figure is a two-dimensional representation when $u=4$.
- As viewed along the baseline vector, the fringes show a 'bullseye' pattern - concentric circles.

The Effect of the Sensor

- The patterns shown presume the sensor has isotropic response.
- This is a convenient assumption, but (sadly, in some cases) doesn't represent reality.
- Real sensors impose their own patterns, which modulate the amplitude and phase, of the output.
- Large sensors (a.k.a. 'antennas') have very high directivity --very useful for some applications.

The Effect of Sensor Patterns

- Sensors (or antennas) are not isotropic, and have their own responses.
- Top Panel: The interferometer pattern with $\operatorname{a~} \cos (\theta)-$
 like sensor response.
- Bottom Panel: A multiple-wavelength aperture antenna has a narrow beam, but also sidelobes.

The Response from an Extended Source

- The response from an extended source is obtained by summing the responses at each antenna to all the emission over the sky, multiplying the two, and averaging:

$$
R_{C}=\left\langle\int V_{1} d \Omega_{1} \int V_{2} d \Omega_{2}\right\rangle
$$

- The averaging and integrals can be interchanged and, providing the emission is spatially incoherent, we get

$$
R_{C}=\iint I_{v}(\mathbf{s}) \cos (2 \pi v \mathbf{b} \times \mathbf{s} / c) d \Omega
$$

- This expression links what we want - the source brightness on the sky, $I_{v}(\mathbf{s})$, - to something we can measure - R_{C}, the interferometer response.
- Can we recover $I_{v}(\mathbf{s})$ from observations of R_{C} ?

A Schematic Illustration in 2-D

- The correlator can be thought of 'casting' a cosinusoidal coherence pattern, of angular scale $\sim \lambda / b$ radians, onto the sky.
- The correlator multiplies the source brightness by this coherence pattern, and integrates (sums) the result over the sky.
- Orientation set by baseline geometry.
- Fringe separation set by (projected) baseline length and wavelength.
- Long baseline gives close-packed fringes
- Short baseline gives widely-separated fringes
- Physical location of baseline unimportant, provided source is in the far field.

Odd and Even Functions

- Any real function, $\mathrm{I}(\mathrm{x}, \mathrm{y})$, can be expressed as the sum of two real functions which have specific symmetries:

$$
I(x, y)=I_{E}(x, y)+I_{O}(x, y)
$$

An even part: $\quad I_{E}(x, y)=\frac{I(x, y)+I(-x,-y)}{2}=I_{E}(-x,-y)$

An odd part: $\quad I_{O}(x, y)=\frac{I(x, y)-I(-x,-y)}{2}=-I_{O}(-x,-y)$

But One Correlator is Not Enough!

- The correlator response, R_{c} :

$$
R_{C}=\iint I_{v}(\mathbf{s}) \cos (2 \pi v \mathbf{b} \times \mathbf{s} / c) d \Omega
$$

is not enough to recover the correct brightness. Why?

- Suppose that the source of emission has a component with odd symmetry:

$$
\mathrm{I}_{\mathrm{o}}(\mathrm{~s})=-\mathrm{I}_{\mathrm{o}}(-\mathrm{s})
$$

- Since the cosine fringe pattern is even, the response of our interferometer to the odd brightness distribution is 0 !

$$
R_{c}=\iint I_{o}(\mathbf{s}) \cos (2 \pi v \mathbf{b} \times \mathbf{s} / c) d \Omega=0
$$

- Hence, we need more information if we are to completely recover the source brightness.

Why Two Correlations are Needed

- The integration of the cosine response, R_{c}, over the source brightness is sensitive to only the even part of the brightness:

$$
R_{C}=\iint I(\mathbf{s}) \cos (2 \pi v \mathbf{b} \times \mathbf{s} / c) d \Omega=\iint I_{E}(\mathbf{s}) \cos (2 \pi v \mathbf{b} \times \mathbf{s} / c) d \Omega
$$

since the integral of an odd function $\left(\mathrm{I}_{\mathrm{O}}\right)$ with an even function (cos x) is zero.

- To recover the 'odd' part of the intensity, I_{O}, we need an 'odd' fringe pattern. Let us replace the 'cos' with 'sin' in the integral

$$
R_{s}=\iint I(\mathbf{s}) \sin (2 \pi v \mathbf{b} \times \mathbf{s} / c) d \Omega=\iint I_{o}(\mathbf{s}) \sin (2 \pi v \mathbf{b} \times \mathbf{s} / c) d \Omega
$$

since the integral of an even times an odd function is zero.

- To obtain this necessary component, we must make a 'sine' pattern.

Making a SIN Correlator

- We generate the 'sine' pattern by inserting a 90 degree phase shift in one of the signal paths.

Define the Complex Visibility

- We now DEFINE a complex function, the complex visibility, V, from the two independent (real) correlator outputs R_{C} and R_{S} :

$$
V=R_{C}-i R_{S}=A e^{-i \phi}
$$

where

$$
\begin{aligned}
A & =\sqrt{R_{C}^{2}+R_{S}^{2}} \\
\phi & =\tan ^{-1}\left(\frac{R_{S}}{R_{C}} \frac{)}{\dot{\zeta}}\right.
\end{aligned}
$$

- This gives us a beautiful and useful relationship between the source brightness, and the response of an interferometer:

$$
V_{v}(\mathbf{b})=R_{C}-i R_{S}=\iint I_{v}(s) e^{-2 \pi i \mathbf{b} \mathbf{b} / c} d \Omega
$$

- Under some circumstances, this is a 2-D Fourier transform, giving us a well established way to recover $I(\mathbf{s})$ from $V(\mathbf{b})$.

The Complex Correlator and Complex Notation

- A correlator which produces both 'Real’ and 'Imaginary' parts or the Cosine and Sine fringes, is called a 'Complex Correlator'
- For a complex correlator, think of two independent sets of projected sinusoids, 90 degrees apart on the sky.
- In our scenario, both components are necessary, because we have assumed there is no motion - the 'fringes' are fixed on the source emission, which is itself stationary.
- The complex output of the complex correlator also means we can use complex analysis throughout: Let:

$$
\begin{aligned}
& V_{1}=A \cos (\omega t)=\operatorname{Re}\left(A e^{-i \omega t}\right) \\
& V_{2}=A \cos [\omega(t-\mathbf{b} \cdot \mathbf{s} / c)]=\operatorname{Re}\left(A e^{-i \omega(t-b \cdot b / c)}\right)
\end{aligned}
$$

- Then:

Picturing the Visibility

- The source brightness is Gaussian, shown in black.
- The interferometer 'fringes' are in red.
- The visibility is the integral of the product - the net dark green area.
- R_{C}
- R_{S}
-Long Baseline
- Short Baseline

Examples of 1-Dimensional Visibilities

Simple pictures are easy to make illustrating 1-dimensional visibilities.
Brightness Distribution
Visibility Function

- Unresolved Doubles
- Uniform
- Central Peaked

More Examples

Simple pictures are easy to make illustrating 1-dimensional visibilities. Brightness Distribution Visibility Function

- Resolved Double
- Resolved Double
- Central Peaked Double

Basic Characteristics of the Visibility

- For a zero-spacing interferometer, we get the 'singledish' (total-power) response.
- As the baseline gets longer, the visibility amplitude will in general decline.
- When the visibility is close to zero, the source is said to be 'resolved out'.
- Interchanging antennas in a baseline causes the phase to be negated - the visibility of the 'reversed baseline' is the complex conjugate of the original.
- Mathematically, the visibility is Hermitian, because the brightness is a real function.

Some Comments on Visibilities

- The Visibility is a unique function of the source brightness.
- The two functions are related through a Fourier transform. $\quad V_{v}(u, v) \Leftrightarrow I(l, m)$
- An interferometer, at any one time, makes one measure of the visibility, at baseline coordinate (u, v).
- Sufficient knowledge of the visibility function (as derived from an interferometer) will provide us a reasonable estimate of the source brightness.
- How many is 'sufficient', and how good is 'reasonable'?
- These simple questions do not have easy answers...

