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Detectors
And Noise



Detectors
• A detector is a transducer, converting the incoming

electromagnetic signal (E or W) into an electrical signal (V or i), 
in a controlled and repeatable way. 

• The electrical signal can be amplified, digitized, stored, analyzed.
• Usually V=RW, where R is the responsivity of the detector 

(units V/W): a constant which is measured following a calibration
procedure.

• The calibration consists in observing a source producing a known
power on the detector, and recording the output voltage produced
by the detector. 

• Other important characteristics of a detector are
– Linearity and Dynamic Range
– Time constant
– Spectal response
– Angular response
– Noise Equivalent Power (NEP) or Noise Equivalent Temperature (NET) 



Noise
• A noisy physical observable features random fluctuations of its

value. 
• The amplitude of these fluctuations can only be quantified

statistically: their punctual behaviour cannot be predicted, it is
not deterministic.

• The simplest statistical tool to characterize noise is the variance: 
for a given observable V(t) the variance is

• Even if the noise is stationary (i.e. its statistical description does
not change with time) and Gaussian (the histogram of the 
fluctuations is a Gaussian), the variance does not provide a full 
description of its characteristics.
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• The two noise records above have the same variance but in the top 
record the signal deviates from the average for longer periods. 

• To characterize this, we need a statistical estimator specifying the 
contributions to the variance coming from the different frequencies
present in the noise. 

• This estimator is the spectral density of the noise wV(f) (aka the power 
spectrum of the noise). Its integral over all frequencies is the 
variance.
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Noise and measurement errors
• The fluctuations due to the noise produce an error 

in the measurement of the obserable:

• Where f1 and f2 are the minimum and maximum
frequencies present in the observable.

• For a real measurement
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Noise and measurement errors
• In order to reduce the error, data are integrated, so that the 

fluctuations due to the noise average out, reducing the 
variance of the observable.

• An integration for a time T is equivalent to filtering the 
data with a low-pass filter with cutoff frequency at f=1/T.

• So the variance of the observable will be

• The exact relationship depends on the actual shape of the 
filter (running average, low-pass filters with different
orders…)

• Anyway, the relationship between error and integration
time in the case of white noise is always
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Noise and measurement errors
• If the noise is not white, we have a problem…

• Noise with fundamental origin (thermal) is most often white

White noise 1/f noise



Noise and detectors
• To specify the noise of a detector, we need to specify how the 

voltage fluctuations produced by noise at the output of the detector 
compare to the voltage signal produced by the incoming radiative
power.

• The Noise Equivalent Power (NEP) is the incoming radiative
power which produces an output signal equal to the rms fluctuation
due to the noise, in an integration time of 1 second. 

• With this definition, it is evident that the noise equivalent power 
corresponds to the minimum power detectable in 1 s of integration. 

• In formulas

• So the units of the NEP are 
• If your detector has a specified NEP, the error in a measurement of 

power with an integration time T will be
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Conversion from NEP to NETCMB

∫

∫

∫

−
Ω

=

→
Δ

−
Ω=

=
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
Ω=Ω=ΩΔ=Δ

2

1

2

1

2

1

),(
1

),(
1

),(

ν

ν

ν

ν

ν

ν

νν

νν

νν

dTB
e
xeA

NEPTNET

T
TdTB

e
xeA

dTdTB
dT
dAdT

dT
dBABAW

CMBx

xCMBCMB

CMB

CMB
CMBx

x

CMB



Radiation Noise
• The fundamental limit of any measurement.
• Photon noise reflects the particle-wave

duality of photons.
• It is the sum of Poisson noise (particles) 

PLUS interference noise (waves)
• Poisson noise:
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This is a typical random-walk process (variance prop.to time).
Using Einstein’s generalization
we get the power spectrum and the variance
of radiative power fluctuations: 
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Radiation Noise
• Orders of magnitude example: A He-Ne 1 mW

laser beam has a perfect Poisson statistics, so

• Notice the power spectrum units (remember that
the integral of the PS over frequency is the 
variance). 

• In this case the intrinsic fluctuations per unit
bandwidth are >7 orders of magnitude smaller than
the signal. 

• It is useless to build a complex detector with a 
noise of                        for this measurement: the 
precision of the measurement will be limited at a 
level of 
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Radiation Noise
• Thermal radiation (like the CMB) has also

wave interference noise: the correct statistics
is Bose-Einstein.
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Radiation Noise
• For a blackbody
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Noise and integration time
• Numerical example: CMB anisotropy (or 

polarization) measurement limited only by
radiation noise:
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Spider-Web Bolometers

Absorber

Thermistor

Built by JPL Signal wire

2 mm

•The absorber is micro
machined as a web of 
metallized Si3N4 wires, 2 
μm thick, with 0.1 mm 
pitch. 

•This is a good absorber for
mm-wave photons and 
features a very low cross 
section for cosmic rays. 
Also, the heat capacity is
reduced by a large factor
with respect to the solid
absorber.

•NEP ~ 2 10-17 W/Hz0.5 is
achieved @0.3K  

•150μKCMB in 1 s

•Mauskopf et al. Appl.Opt. 
36, 765-771, (1997)



Sensitivity to CMB anisotropy
• A map of CMB anisotropy is a sampled image

ΔTi =ΔT(li,bi) for i=1,Npix , where ΔT(li,bi) is the average of 
ΔT(l,b) over the pixel area, for the pixel centered in (li,bi). 

• Knowing : 
– the instantaneous sensitivity (NET), 
– the instrument angular resolution θ, 
– the sky coverage of the survey Ω

• we can compute the standard error for the estimate of ΔTi of 
each pixel, for a given total observation time t.

• Assuming uniform coverage and square pixels with side θ, 
we have simply
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Sensitivity to CMB anisotropy
• Numerical example: assume

• You get

• Per pixel, over 14400 pixels: a large dataset, with a 
S/N ratio per pixel of the order of 3. 
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Sensitivity to CMB anisotropy
• An array of n detectors optimally used will simply

multiply by n the observation time available for
each pixel.

• So we get

• The use of a large array can give more that just an
improvement of sqrt(n). For ground based
observations, atmospheric noise can be
significantly reduced by exploiting the correlations
of the noise over different pixels.
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Sensitivity to the Power Spectrum
• Knowing : 

– the instantaneous sensitivity, 
– the angular resolution, 
– the sky coverage

• we can compute the sensitivity to the different
multipoles of the power spectrum, for a given survey
duration T.

• A first part of the fluctuation comes from the 
statistical nature of the observable cl .

• Since the alm are gaussian, cl is distributed as a χ2

with 2l+1 DOF, so that
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Sensitivity to the Power Spectrum
• If only a fraction f  of the sky is surveyed, the 

cosmic variance becomes

• The second contribution to the errors comes from
detector noise. 

• If a total of N pixels is observed, the error in the 
determination of the temperature in each pixel will
be of the order of
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Sensitivity to the Power Spectrum
• And the error on the  cl becomes

• When several multipoles are binned in a band-power 
< cl > with bin-width Δl, we have roughly

• Since the power spectrum of CMB anisotropy and 
polarization is smooth, a binning with Δl =20-30 is
perfectly acceptable. 
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Spider-web bolometers

Made in JPL

BOOMERanG 1998 (0.3K), 
Archeops 2001 (0.1K),  
….
Planck-HFI



BOOMERanG (1998, 2003)





Il lancio





The target region

270o 270o

180o 180o

90o 90o

0o

Position of the sun
during the measurements

The best (lowest contamination) area of all
the sky is in the southern hemisphere, and 
happens to be far from the sun in the 
antarctic summer (constellations of 
Caelum, Doradus, Pictor, Columba, 
Puppis)

Map of mm-wave emission of dust in our galaxy
as derived from IRAS and DIRBE 

measurements (Schlegel et al 1999)

Minimum
Brightness (0.33 MJy/sr)

Maximum
Brightness (30 MJy/sr)

Emisfero Nord Emisfero Sud

Log scale



A scanning telescope
• BOOMERanG is a scanning experiment: the beam scans the sky at 

constant speed v (1 to 2o/s), with 60o wide scans.
• Different multipoles in the CMB temperature field produce different

sub-audio frequencies in the detector (see e.g. astro-ph/9710349)

• This technique allows to produce wide sky maps, so that a wide
multipoles coverage of the power spectrum can be obtained in a single 
experiment

• This approach requires extremely low detector noise, fast detectors, 
and a strategy allowing for repeated observations of the same sky pixel 
with different orientations of the scan.

• The full payload is rotated to scan the sky: no moving modulators in 
the optical path
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Γ(f)



The sky scan
• The image of the sky is obtained by

slowly scanning in azimuth (+30o) at 
constant elevation

• The optimal scan speed is between 1 
and 2 deg/s in azimuth
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• The scan center 
constantly tracks the 
azimuth of the lowest
foreground region

• Every day we obtain a 
fully crosslinked map.



The sky scan
• The image of the sky is obtained by

slowly scanning in azimuth (+30o) at 
constant elevation

• The optimal scan speed is between 1 
and 2 deg/s in azimuth

3 4 5 6

-55

-50

-45

-40

-35

crosslink in BOOMERanG LDB scans (1 scan/hour sho

elev. = 45o

   0-11h

 12-23h

de
cl

in
at

io
n 

(d
eg

re
es

)

Right Ascension (hours)
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constantly tracks the 
azimuth of the lowest
foreground region

• Every day we obtain a 
fully crosslinked map.



From time-ordered data to the map
• Pointing reconstruction (gyros + differential GPS + fine Sun Sensor)
• Bolometer data editing (cosmic rays hits and other instrumental events, <4% of the 

data removed)
• All our maps use HEALPIX pixelization (http://www.eso.org/~kgorski/healpix/)
• 1) “Naive” coadded maps (E.Hivon, B.Crill, F.Piacentini) with high pass (θ>10o

removed)
• 2) “Rigorous” method: Maximum likelihood maps
• m = (ATN-1A)-1ATN-1d

• Needs: 
– estimate of noise N-1: iterative method (Prunet et al. Astro-ph/0006052).
– MADCAP(Borrill, astro-ph/9903204) 

http://cfpa.berkeley.edu/~borrill/cmb/madcap.html
• Outputs:

– M=maximum likelihood map
– v = (ATN-1A)-1ATN-1n          γ=<vvT>= (ATN-1A)-1 pixel-pixel noise covariance

Map, 105 pixels
Time-time noise
correlation matrix
57x106 x 57x106

Pointing matrix 57x106 x 105

Time ordered data 57x106 samples



Data cleaning   de-spiking



Data cleaning   data slice



Data cleaning   naive combination



Data cleaning   optimal map-making





Angular scale (deg)

First evidence (2000)
from BOOMERanG



Critical density Universe

Ω>1

Ω<1

High density Universe

Low density Universe
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Use the standard ruler to measure Ω



Examples
Dependance on Ω (curvature drives the location of first peak).
Not as simple as in these examples (see S.Weinberg, astro-ph/0006276 )
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Netterfield et al. 2001, de Bernardis et al. 2002



Examples
Dependance on Ωb (Relative amplitudes second to first peak):
All the spectra are normalized to the first peak.

0 200 400 600 800 1000 1200 1400
0,0
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Degeneracies are
still present:
See e.g. ns vs τc

This limits the
precision of the
determination of
ns (which is slightly
sensitive to the ML
vs BM method):

ns=(0.90+0.10) ML
ns=(0.96+0.08) BM



“The perfect universe”



“The perfect universe”



“The perfect universe”



“The perfect universe”



“The perfect universe”



“The perfect universe”



“The perfect universe”
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“The perfect universe”
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Are the BOOMERanG 
data Gaussian ? 150 GHz

In the 1% region
14’ Pixels

off-diagonal terms
are neglected
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Gianluca Polenta

(Measured ΔTi)/σi  ;



Minkowski functionals:

For a given threshold ν
we compute the excursion set
Q(ν)={all Ti: (Ti-<T>)/σ > ν}
and its contour δQ. If dA and 
ds are the differential elements
of Q and δQ, and k is the
normal to δQ, the Minkowski
functional densities are:
vo = [ ∫Q dA ]/A     (area)
v1 = [ ∫δQ ds ]/A     (length)
v2 = [ ∫δQ k ds ]/A  (genus)
(Polenta et al. 2001)

Other test being performed
(Gurzadyan & Kashin, 
Contaldi, Ferreira, De Troia…)

measured

Gaussian Sky
Monte-Carlo
95% CL band

genus

area

length



Systematics



Systematics ARE there. 
• Knox’s formula assumes simple white gaussian noise.
• In the real world noise is not gaussian and we have

drifts, spikes, events of different kind in the raw data.
• Detectors characteristics (responsivity, noise) can 

change with time during the survey. 
• Moreover, low-level local emission can contaminate 

the sky signal in a non gaussian way.
• Evident features are easily identified and rejected.
• Features smaller than the noise cannot be removed, 

and contaminate the results.
• The experiment needs to have internal redundancy in 

order to make tests for the presence of systematics.



Systematics ARE there. 
• The experiment needs to have internal redundancy in 

order to make tests for the presence of systematics.
A. Several detectors at the same frequency
B. Several different frequencies

• The experimental conditions must be changed, to
check the reliability of the result
C. Experiment different scan speeds
D. Experiment different sidelobes conditions
E. Experiment different locations of sun, moon, 

strong sources.
F. Results must be compared to results of similar, 

independent experiments. 
• Calibration should be carried out several times during

the survey



Test A:

• Compare independent channels at the same
frequency.

• Different bolometers have different noise
performance.

• Two channels with similar performance are 
B150A and (B150A1+B150A2)/2

• Sum and difference maps:
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Test B:
• The spectral test shows that the structures present in 

the maps are CMB anisotropies. In fact:
• The maps at different frequencies are plotted in 

thermodynamic temperature units for the CMB 
(mK) so that structures with the spectrum of the 
CMB will appear the same at all frequencies.

• Structures with the spectrum of the CMB are 
evident in the maps and have high S/N at 90, 150, 
240 GHz. The dust monitor channel at 410 GHz
shows no CMB and very little dust.
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“1%” Region



Are these genuine CMB fluctuations ?

The rms fluctuations
ΔTrms = {Σl (2l+1) cl wl /4π}1/2

are spectrally distributed as the 
derivative of a 2.73K 
blackbody. All other
astrophysical sources of 
confusion do not fit the data.

This means that the bulk of 
the observed fluctuations has a 
cosmological origin.

2-D and 3-D scatter plots
confirm this conclusion
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90GHz
150GHz

240GHz

scatter plots of
high latitude data

Astro-ph/0011469



Test C

• We have a powerful tool: data were taken at two
different scan speeds: 1 dps and 2 dps.

• At 2dps the sky signal is converted into an
electrical signal at twice the frequency, while
instrument related effects (transfer function, 1/f 
noise, microphonic lines etc.) remain at the same
frequency.

• For the same detectors compare maps from data 
taken at 1dps and from data taken at 2 dps



1 dps map + 2 dps map



1 dps map - 2 dps map





Test F:

BOOMERanG vs. WMAP



WMAP (2002)

Wilkinson Microwave Anisotropy Probe



WMAP in L2 : sun, earth, moon are all
well behind the solar shield.



WMAP
Hinshaw et al. 2006
astro-ph/0603451

BOOMERanG
Masi et al. 2005
astro-ph/0507509

1o
Detailed Views of the 
Recombination Epoch
(z=1088, 13.7 Gyrs ago)



WMAP 3 years
23-94 GHz

BOOMERanG-98
145 GHz

BOOMERanG-03
145 GHz

The consistency of the maps from three independent
experiments, working at very different frequencies and 
with very different mesurement methods, is the best 
evidence that the faint structure observed
•is not due to instrumental artifacts
•has exactly the spectrum of CMB anisotropy, so it is
not due to foreground emission
•The comparison also shows the extreme sensitivity of 
cryogenic bolometers operated at balloon altitude (the 
B03 map is the result of 5 days of observation)



Hinshaw et al. 2006



CMB Polarization – Why ?
• An inflation phase at E=1016–1015 GeV (t=10-36-10-33 s) is

currently the most popular scenario to explain
– The origin of our universe
– The geometry of our universe
– The origin and morphology of structures in our universe
– The lack of defects, and the smoothness of the CMB at super-horizon

scales.
• Inflation is a predictive theory:

1. Any initial curvature is flattened by the huge expansion: we expect an 
Euclidean universe.

2. Adiabatic, gaussian density perturbations are produced from quantum 
fluctuations. This is the physical origin for structures in the Universe.

3. The power spectrum of scalar perturbations is approximately scale 
invariant, P(k)=Akn-1 with n slightly less than 1. 

4. Tensor perturbations produce a background of primordial gravitational 
waves (PGW)

• 1.,2.,3. have been confirmed already by measurements of CMB 
anisotropy

• 4. can be tested measuring CMB polarization



CMB Polarization – Why ?
• Linear Polarization of CMB photons is

induced via Thomson scattering by
quadrupole anisotropy at recombination
(z=1100, t =1.2x1013s).

• In turn, quadrupole anisotropy is induced by
– Density perturbations (scalar relics of inflation) 

producing a curl-free polarization vectors field
(E-modes)

– Gravitational waves (tensor relics of inflation) 
producing both curl-free and curl polarization
fields (B-modes)

• No other sources for a curl polarization field
of the CMB at large angular scales: 

• B-modes are a clear signature of inflation.
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E-modes & B-modes

• From the measurements of the Stokes Parameters Q
and U of the linear polarization field we can recover
both irrotational and rotational alm by means of 
modified Legendre transforms:
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• The amplitude of this effect is very small, but
depends on the Energy scale of inflation. In fact the 
amplitude of tensor modes normalized to the scalar 
ones is:

• and

• There are theoretical arguments to expect that the 
energy scale of inflation is close to the scale of GUT 
i.e. around 1016 GeV.

• The measurement of B-modes is a good way to
investigate fundamental physics at extremely high 
energies. 
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The signal is extremely weak
• The current upper limit on anisotropy at large

scales gives R<0.5 (at 2σ) 
• A competing effect is lensing of E-modes, which is

important at large multipoles.
• Nobody really knows how to detect this.

– Pathfinder experiments are needed
• Whatever smart, ambitious experiment we design 

to detect the B-modes:
– It needs to be extremely sensitive
– It needs an extremely careful control of 

systematic effects
– It needs careful control of foregrounds
– It will need independent experiments with

orthogonal systematic effects.
• A lot has been done, but there is still a long 

way to go: …



Komatsu et al. 2010 – astro-ph/1001.4538
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E-modes : 3 μK (2002…)



CMB Polarization (2002 … ): E-modes 3 μK
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CMB Polarization (2002 … ): E-modes 3 μK
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CMB Polarization (2002 … ): E-modes 3 μK
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Lensing of E-modes
• E-modes have been measured already with good

accuracy, and will be measured with exquisite
accuracy by Planck and other experiments.

• They depend on the distribution of mass (mainly
dark matter) so their study can shed light on the 
nature of dark matter (including massive
neutrinos). 

• While the primordial B-mode is maximum at 
multipoles around 100 (θ=2°), the lensed B-mode
is maximum at multipoles around 1000 (θ=0.2°), 
requiring high angular resolution polarization
experiments
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