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What is the CMB According to modern
cosmology:
An abundant background of 
photons filling the Universe.

• Generated in the very early
universe, less than 4 μs after the 
Big Bang (109γ for each baryon) 
from a small asymmetry

• Thermalized in the primeval
fireball (in the first 380000 
years after the big bang) by
repeated scattering against free
electrons

• Redshifted to microwave
frequencies (zCMB=1100) and 
diluted in the subsequent 14 
Gyrs of expansion of the 
Universe
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σ (cm-1) wavenumber (= 1/λ(cm))



Environment ! Space : to remove atmospheric emission
Cryogenics : to limit instrumental emission



COBE-FIRAS
• COBE-FIRAS was a 

cryogenic Martin-
Puplett Fourier-
Transform
Spectrometer with
composite 
bolometers. It was
placed in a 400 km 
orbit.

• A null instrument
comparing the specific
sky brightness to the 
brightness of a 
cryogenic Blackbody



All this is cooled at 2K (-271oC)



Fourier Transform
Spectrometers (FTS) 

• To measure spectra, you use
interference (prism, grating, FP … ) 

• In the case of the FTS only 2 light 
beams interfere: this is the simplest
experimental configuration, but results
in a complex encoding of the 
spectrum.



• Take the beam to be
analyzed (A), transform it
into a quasi-parallel beam
(C), and split it in two beams
(D).

• Delay one of the two beams
(E), driving it along a longer
optical path (x). 

• Recombine the beams on the 
detector (H and J), and 
record the detected power 
vs. the optical path
difference (this is called the 
interferogram).

• The interferogram is the 
Fourier transform of the 
spectrum of the incoming
radiation (as shown below).

Recipe for a FTS

ZPD

OPD
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• The OPD (optical path
difference) is 2x.

• For a perfectly
monochromatic radiation with
wavenumber σ (=1/λ) the 
resulting field on the detector 
will be

• Here RT is the efficiency of 
the beamsplitter (frequency
dependent, in general)

ZPD

OPD

Elementary theory of the FTS



Elementary theory of the FTS
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• The power on the detector I(x) will be
proportional to the mean square electrical field:

• So the interferogram is
• If the input radiation is not monochromatic, and 

each wavenumber has amplitude S(σ):
The specific
Brightness and the 
interferogram are 
related by a Fourier
Transform



Moving mirror displacement x (μm)
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Elementary theory of the FTS

• For obvious reasons we cannot extend x to
infinity ! If the maximum displacement of the 
moving mirror is xmax , all we can do is to
compute

• S’ is an approximation of the real spectrum S 
• The main difference is in the effective

spectral resolution of the spectrometer, 
which for S’ is limited to approx. 1/(2xmax).
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Spectral Resolution
• Consider a monochromatic line with

wavenumebr σo: the interferogram is

• The Fourier integral, limited to +xmax, is:

• This is an approximation of the real S(σ) 
which would be a delta function centered
in σo : in place of a delta, we get a sinc, 
with a half-width approx. 1.23/(2xmax).
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σ (cm-1) wavenumber (= 1/λ(cm))

Working with continuous radiation, low
spectral resolution is not a real problem: 
with a maximum displacement of the 
moving mirror of 1 cm we get a 
resolution of about 0.5 cm-1 (15 GHz), 
perfect to describe the blackbody curve.
Working with spectral lines, one would
have to increase the displacement. 
1m is surely feasable.



Beamsplitter problems

• What we get is the input spectrum times the 
efficiency of the beamsplitter. 

• If the latter goes to zero, we cannot retrieve
the spectrum.

• So we need good beamplitters, ideally with
rt=0.25, independent on frequency. 
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• The simplest
beamsplitter is a 
dielectric slab, with
refaction index n and 
thickness t.

• Due to multiple 
reflections inside the 
slab, the transmitted
and reflected fields
can be computed as
the sum of an infinite 
number of 
components with
decreasing amplitude
(a converging series) 
and increasing phase
delay. 

the beamsplitter
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the beamsplitter
• The efficiency is a 

periodic function
with zeros at 
wavenumbers

• Whatever
thickness and 
refraction index
you select, this is
not efficient at low
frequencies.

Polyethylene
Terephthalate
(mylar or melinex)
n=1.7



Linear Polarizers
• Linear polarizers can be used as high efficiency

achromatic beamsplitters at long wavelengths.
• A linear polarizer is an optical device transmitting

only the projection of the E field of the EM wave
parallel to a given direction, which is called the 
principal axis of the polarizer. 

• Unpolarized radiation (where the E field direction in 
the wavefront is random) is transformed into
linearly polarized radiation (where the E field
direction is constant) when crossing a polarizer.
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• The component of the incoming field orthogonal to
the PA is either absorbed or reflected, depending
on the perticular polarizer used.

• Note that

• So, for θ=45° incidence, half of the intensity is
transmitted (and half is reflected or absorbed). 

Linear Polarizers
• The transmitted field E’ can 

be computed projecting the 
incoming field E along the 
Principal Axis:
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• At long wavelengths metallic wire grids
act as ideal polarizers: 

• Radiation with E parallel to the wires
induces a current in the wires, so the 
polarizer acts as a metallic mirror: 
radiation is fully reflected and is not
transmitted.

• Radiation with E orthogonal to the 
wires cannot induce a current in the 
wires, so it is transmitted.

• Radiation at a generic angle from the 
wires is partially transmitted
(orthogonal component) and partially
reflected (parallel component).

• If the spacing of the wires a and their
diameter d are much less than the 
wavelength, the wire grid is very close
to an ideal polarizer, with its principal
axis orthogonal to the wires.

• Wire grid polarizers can be used as 
ideal beamsplitters for radiation at 
45° wrt the wires: half of the intensity 
is transmitted, and half is reflected, 
without any wavelength dependance.

• Wire grids can be machined easily
using a lathe and tungsten wire, which
is available in long coils.
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• In the Martin-Puplett
configuration, radiation is
prepared by the first 
polarizer, then is split by the 
second, and is recombined by
the third.

• There are two sources. The 
beam from source 1’ is
reflected one time more than
the beam from source 1. 

• For each metallic reflection
there is a 180° phase change
of the electric field, so the 
detector will measure the 
difference in spectral
brightness between source 1 
and source 1’. 

• The instrument becomes a 
zero instrument, comparing
the brightness of two sources
(see later).

• In the case of FIRAS one 
source was the sky, the other
one was an internal
blackbody. 

Martin Puplett
Interferometer



Martin Puplett Interferometer
• Two input ports

and two output 
ports.

• Uses two
unpolarized
sources, and two
detectors
sensitive to the 
power. 

• Let’s study the 
operation
following the 
beams.



Martin Puplett Interferometer
• The input polarizer

A reflects radiation
from source S1’ and 
transmits radiation
from S1

• Assume that the 
polarizer wires are 
horizontal (main
axis of the polarizer
vertical) 

• The beam at 
position 3 has a 
vertical component
from S1 and a 
horizontal
component from S1’
.



Martin Puplett Interferometer
• The input polarizer

A reflects radiation
from source S1’ and 
transmits radiation
from S1

• Assume that the 
polarizer wires are 
horizontal (main
axis of the polarizer
vertical) 

• The beam at 
position 3 has a 
vertical component
from S1 and a 
horizontal
component from S1’
.



Martin Puplett Interferometer
• The wires of the 

beamsplitter polarizer
B are oriented to be
seen by incoming
radiation at 45o from
the drawing plane. 

• In this way, B reflects
a fraction of the 
vertical component
from S1 and a fraction
of the horizontal
component from S1’ .

• So beam 4 will be
polarized at 45° and 
will consist of equal
contributions from
both S1 e da S1.



The beamsplitter
polarizer B 
reflects radiation
from both sources

3

4



Martin Puplett Interferometer

• In addition, B 
transmits a fraction
of the vertical
component from S1
and a fraction of the 
horizontal
polarization from S1’.

• So beam 4’ is
polarized at 45° and 
consists of equal
contributions from
both S1 and S1’



The beamsplitter B 
transmits and 
reflects radiation
from both sources
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4’



Martin Puplett Interferometer
• The roof mirror CD 

reflects beam 4 into
beam 6 back to the 
beamsplitter B.

• A roof mirrror is
used in place of a 
normal mirror
because it rotates
the polarization
plane by 90o. 

• In this way beam 6, 
which had been
reflected by B, now
is transmitted
towards the 
detectors.



A roof mirror
rotates the 
polarization
plane by 90o.

4
6

5



Martin Puplett Interferometer

• In the same way 
the roof mirror
C’D’ reflects beam
4’ back towards
the beamsplitter
(as 6’) 

• The polarization
plane is rotated
by 90°, so that
beam 6’, which
had been
transmitted (as
4’) now is
reflected towards
the detectors.



Martin Puplett Interferometer
• The output polarizer G 

has wires parallel to the 
drwaing plane. 

• The rays coming from the 
beamsplitter, which are at 
45°, have both horizontal
and vertical components
(coming from both
sources) so they
contribute to both the 
beams towards the 
detectors (both
transmitted and reflected) 

• In this way both detectors
receive radiation from
both sources, which
passed through both the 
arms of the 
interferometer.



Martin Puplett Interferometer

• The fundamental
difference is that
radiation from source S1’
underwent 4 reflections, 
while radiation from S1 
underwent only 3 
reflections. Since each
reflection produces a 180°
phase shift, the 
instrument measures the 
diffence between
interferograms produced
by S1’ and S1



Quantitative treatment: uses Jones Calculus

• Jonex matrices are used to describe linearly
polarized radiation (Jones 1941)

• The interaction of the E field of the EM wave with
an optical component is described by a 2x2 matrix: 

• They work only for fully polarized radiation. For
partially polarized radiation one can use Muller
calculus (loosing any phase information). 
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• If E is the amplitude of the electric field of the EMW, 
it is represented as in the following examples:

• Linear polarization
aligned along x axis

• Linear polarization
aligned along y axis

• 45° from x axis

• -45° from x axis

• Circular polarization
(right)

• Circular polarization
(left)
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Reference system

• Ideal single mirror, 
orthogonal to xz plane:

• Ideal roof mirror, orthogonal
to xz plane:
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Linear polarizers
• Transmission : 

Polarizer with horizontal
principal axis:

• Transmission : 
Polarizer with vertical
principal axis:

• Transmission : 
Polarizer with principal
axis at angle φ from x 
axis

• Reflection : Polarizer
with principal axis at 
angle φ from x axis
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Delay

• Introduced by an optical path difference
δ=4πσx : this is common for both
polarizations, so

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

δ

δ

δ i

i

e
e

D
0

0



• The two sources
S1 and S’1 , are 
described by Jones
vectors

• beam 3, after the 
input polarizer
(with horizontal
principal axis), is
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• beam 4 (reflected
by the 
beamsplitter) and 
beam 4’
(transmitted by the 
beamsplitter) will
be:
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• Since roof mirrors
are represented by
unity matrix, we
have also
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reflected, so
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• So
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• After the interaction with the 
output beamsplitter the beams to
the detectors are 

'
66

'
668 11

11
2
1

11
11

2
1)4/3()4/( SSSPSPS rt ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=+= ππ

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−−

==
)1()1(

0
2
1)0( 8

'
9 δδ i

y
i

x
r eBeA

SPS



• Now we can compute the power on the detectors:

• Both detectors measure a constant intensity (equal to
half of the sum of the intensities from the two
sources), plus a modulated intensity (modulated by
the optical path difference), whose amplitude is the 
difference of the spectra from the two sources. 

• The interferogram is zero if the two sources have
the same spectrum.
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• To measure a few K 
blackbody, you need a 
cryogenic reference
blackbody, with
variable temperature. 
Otherwise you do not
null the signal.

• Practical design of a 
Blackbody cavity: see
e.g. Quinn T.J., Martin 
J.E., (1985), Phil. 
Trans. R. Soc. Lond., 
A316, 85: who made a 
radiometric 
measurement of the 
Boltzmann constant 
(precise to 5 significant 
digits !)



FIRAS
• The FIRAS guys were able to change the temperature of 

the internal blackbody until the interferograms were flat
zero. 

• This is a null measurement, which is much more 
sensitive than an absolute one: (one can boost the gain 
without saturating !).

• This means that the difference between the spectrum of 
the sky and the spectrum of a blackbody is zero, i.e. the 
spectrum of the sky is a blackbody with the same
temperature as the internal reference blackbody.

• This also means that the internal blackbody is a real
blackbody: it is unlikely that the sky can have the same
deviation from the Planck law as the source built in the 
lab.



σ (cm-1) wavenumber



• Isotropic expansion
or contraction:
For every observer :
r = physical distance
χ = comoving distance
a(t) = scale factor

• FRW metric: the most general
homogenous isotropic metric

• 1/k2 = curvature of space
• If we want to know how the universe expands, we need to

integrate the Einstein Field Equations
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Evolution of the scale factor
• a(t) is the solution of the Friedmann equation, which is found from

Einstein’s field equations for a homogeneous isotropic medium, and 
can be rewritten: 

•

• The solution a(t) depends on the different kinds of energy densities
relevant at the considered epoch. To integrate, we need the Ωs: 

• The very first result is that the universe cannot be static: a=a(t). 
• From observations we know that the universe expands today, so a(t)

is growing today.
• To say more on the previous and future behaviour of the scale factor

we need to estimate the cosmological parameters Ωi and Ho.
• Cosmology recently entered in a “precision” phase, were the 

cosmological parameters have been estimated with good precision. 
• Precision measurements of the CMB played a key role in this

process.
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Radiation Phase
• From Friedmann equation is evident that at early epochs (a small) 

the expansion is driven by radiation:

• Note that the expansion rate            tends to infinity at the beginning
(near the Big Bang), and then decreases with time. 

• In this phase the solution a (t) can be found analytically:

• We know Ho from Hubble’s law. ΩR has contributions from CMB 
photons, but also from all other relativistic particles present at early
epochs. So the extrapolation using only the energy density of the 
CMB would not be precise. 
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log a(t)

log ρ(t)

3−= amom ρρ

4−= aror ρρ The radiation phase continues until the energy
density of radiation becomes comparable to
the energy density of non relativistic matter.

34 −− = eqMoRo aaeq ρρ
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Note: at the end of the radiation phase the temperature T=TCMB/a was still > 105 K
The universe was still ionized and opaque.



Matter Phase
• When the energy of non.relativistic matter becomes

dominant

• In this phase the solution a (t) can be found analytically:
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Hot

t1/2

t2/3 From this equation we can estimate how
long it took to go from a=10-5 (end of 
radiation phase) to a=10-3

(recombination). 

The result is 380000 years.
This number is important for the following.



time

Distance between

two positions

At the very beginning, the physical distance
between two positions r(t)=χa(t) increased
at a rate larger than the speed of light. 
Afterwards, the expansion rate decreased.

The result is the presence of 
causal horizons in the Universe
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Expansion vs Horizon

time

Distance travelled
by light since the 
big bang

Distance between
two observers
r(t)=χ12 a(t)

r(t)=ct

At this time the 
two observers see
eachother

At this time the two observers do 
not see eachother: they are 
separated by a causal horizon. 



Horizons at recombination

time

Distance travelled
by light since the 
big bang Distance between

two observers
r(t)=χ12 a(t)

r(t)=ct

Conversely, at any given time, there is a physical separation
between observers which marks the causal horizon: observers more 
distant than this separation did not have enough time to exchange
light signals. They are causally disconnected. 

A generic time tx



Horizons at recombination

time

Distance travelled
by light since the 
big bang Distance between

two observers
r(t)=χ12 a(t)

r(t)=ct

Observers more distant than this separation did not have enough
time to exchange light signals. They are causally disconnected. 
Observers closer than this separation have been in causal contact.

Distance between two
observers entering the 
horizon at tx
r(t)=χ34 a(t)

A generic time tx



Horizon
• The physical phenomena happening within

the causal horizon ar different from the 
phenomena at scales outside the horizon.

• Forces are transmitted at most at the speed
of light, so phenomena outside the causal
horizon are frozen until they enter the 
horizon.

• We should be able to see the effects of 
causal horizons, impressed in the image of 
the CMB. 



Horizons
• At recombination (t=380000 years), only regions of the 

Universe closer than 380000 light years have had the 
possibility (enough time) to interact.

• They might be very different, since they could not
interact during all the previous history of the Universe, 
from the Big Bang to recombination ! 

• However, measurements show that this is not the case.
• CMB anisotropy measurements. 

T1

T2

1°

1°

38
00

00
 ly

38
00

00
 ly

14 000 000 000 ly

10°

• That length, as seen from a distance of the 
order of c/Ho = 14 Glyrs, has an angular
size of about 1 degree.



Measuring
anisotropy

• Anisotropy means that
brightness is a function of the 
observed direction. 

• Large brightness variations
would be evident in a map.

• However, since its discovery, 
it was evident that the CMB is
a very isotropic background. 

• At a few mm of wavelength, 
the brightness of the sky is
dominated by the CMB, and is
isotropic to at least 1 part
over 100. 

• Only if we remove the 
average brightness and 
increase the contrast of the 
image, we start to see
structures. 

• But this requires special 
experimental configurations, 
removing a large background 
an enhancing small
fluctuations. 



Measuring anisotropy
• A way to remove the 

common-mode signal
is to alternate on the 
detector two
contiguous regions of 
the sky, and measure
the AC signal
removing the DC 
signal electronically.

• A small AC signal
synchronous to the 
modulation can be
extracted from
detector noise using a 
demodulation
technique (a lock-in
amplifier). 

Lock-in

In ref.

In S.

Out

Tow
ard

s sky
reg

ion
A

Towards sky
reg

ion B

detector

wobbling
mirror



• Using a 
modulation/demodulation
technique has 3 purposes:

• Remove the common 
mode signal (instrumental
and atmospheric emission
– to first order) 

• Remove noise at 
frequencies different from
the modulation frequency

• Produce a signal
proportional to the 
Difference of Brightness
between the two observed
regions. 

Lock-in

Lock-in

In ref.

In S.

Out

Tow
ard

s sky
reg

ion
A

Towards sky
reg

ion B

detector

wobbling
mirror
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Lock-in
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Signal from detector

Reference signal from modulator (wobbling mirror)
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Signal times Reference
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Lock-in

In presence of noise :

Lock-in

In ref.

In S.
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n’ is a zero-average noise: due to the lack of correlation
between n(t) and R(t), n’ tends to 0 if the average period is
long enough (many modulation cycles). 
To quantify, we need to specify the noise better. 

The combination multiplier + integrator is equivalent to a 
band-pass filter centered on the reference frequency. 



• Let’s consider for simplicity a sine-wave signal :

• The signal from the sky will be at the same frequency of the 
reference, while the noise will have contributions at all
frequencies. 

• The reference also can be a sine-wave at the same frequency as
the signal: 

• At the output of the multiplier we get

• If the low-pass filter has a cut-off frequency lower than
fc=1/T<2π/ω, the sum frequency will be cut, while the difference
frequency will pass with an amplitude

• Where H is the tranfer function of the low-pass filter.
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)( RSSout HVV ωω −=

Sω

)( RSH ωω −)( RSH ωω +−

Rω

outV

The sky signal is exactly at the same
frequency as the reference, with no 
phase delay, so it is transferred to
the output as it is. 

Noise contributes to all frequencies, 
but only those within the bandpass
Δω=2(2πfc)=4π/T will contribute to
the output signal.

In case of wide-band noise the 
improvement in S/N is very
significant !
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If wV is the spectral density of the noise (in V2/Hz) :



Early measurements of CMB anisotropy

at scales of the order of the horizon. So regions which have never
been in causal contact before produce the same CMB brightness, with
outstanding precision. How is this possible ? This is the paradox of 
horizons.

410−<
Δ
T
T

• Using the beam-switching technique described above, you can 
integrate for some time on one couple of directions, then change
directions and integrate again, then change … until you get a 
statistical sample of the sky, consisting typically in a few tens to a 
few hundreds sky temperature differences ΔTi . 

• This is enough to estimate the rms fluctuation of the temperature 
(brightness) of the sky, extracting it from the noise.

• These experiments started immediately after the discovery of the 
CMB (Penzias and Wilson stated in the discovery paper of 1965 
that it was isotropic to 10%)… and were very frustrating !

• For more than two decades a few groups of pioneers of the CMB 
improved their isotropometers, obtaining increasingly stringent
upper limits for the anisotropy of the CMB, down to a level


