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What is the CMB
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According to modern
cosmology:

An abundant background of
photons filling the Universe.

Generated In the very early

universe, less than 4 us after the
Big Bang (10% for each baryon)
fromasmall b-b asymmetry

Thermalized in the primeval
fireball (in the first 380000
years after the big bang) by
repeated scattering against free
electrons

Redshifted to microwave
frequencies (z¢g=1100) and
diluted in the subsequent 14
Gyrs of expansion of the
Universe
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Environment !



COBE-FIRAS |

e COBE-FIRAS was a
cryogenic Martin- B e L e R
Puplett Fourier- opppnsagy O ) o
Transform RefShernalShld N\
Spectrometer with
composite
bolometers. It was
placed in a 400 km
orbit.

e A null iInstrument L i NG
comparing the spemflcﬂ“'“ﬂ*"" e L
sky brightness to the L

brightness of a

cryogenic Blackbody

. HMelium Dewar —"-_ .

N 'Depllovabié Solar Panels - o




Sky Horn

XCAL

All this is cooled at 2K (-271°C)



Fourier Transform
Spectrometers (FTS)

e TO measure spectra, you use
Interference (prism, grating, FP ... )

e In the case of the FTS only 2 light
beams interfere: this is the simplest
experimental configuration, but results
In a complex encoding of the
spectrum.



Recipe for a FTS

Take the beam to be
analyzed (A), transform it
Into a quasi-parallel beam
(C), and split it in two beams
(D).

Delay one of the two beams
(E), driving it along a longer
optical path (x).

Recombine the beams on the
detector (H and J), and
record the detected power
vs. the optical path
difference (this is called the
Interferogram).

The interferogram is the
Fourier transform of the
spectrum of the incoming
radiation (as shown below).

OPD




Elementary theory of the FTS

e The OPD (optical path
difference) is 2x.

e For a perfectly
monochromatic radiation with
wavenumber ¢ (=1/1) the
resulting field on the detector
will be

E(t) = E,(o)RT (o) cos(2zoct) +
+E_(0)RT(c) cos@ract + 47ox)

e Here RT is the efficiency of
the beamsplitter (frequency
dependent, in general)




Elementary theory of the FTS
E(t) = E,(0)RT (o) cos(2zact) + E, ()RT (o) cos(2roct + 4rrox)

e The power on the detector I(x) will be
proportional to the mean square electrical field:

1(X) o< (E(t)*) = (E()E" (1)) =
_ E()Z(G)rt(o_):eiZﬁoct_|_ei27zoctei47mx][e—i27roct_l_e—i27zocte—i47mx]:

= EZ(o)rt(o) :1+ g i4mox  gidmox +1]= EZ(o)rt(c)2(1+ cos 47ox)

e So the interferogram is I(x)—<|>: rt(c) cos(4zox)
e |If the input radiation is not monochromatic, and
each wavenumber has amplitude S(o):

The specific
X Brightness and the
| (X) — j S(o)rt(o) cos(4zox)do interferogram are
0

related by a Fourier
Transform
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Elementary theory of the FTS

e For obvious reasons we cannot extend X to
Infinity ! If the maximum displacement of the
moving mirror Is X all we can do Is to
compute

max ?

Xmax

I(I (x) = >)cos( AroX)dx

e The main difference is in the effective
spectral resolution of the spectrometer,
which for S’ Is limited to approx. 1/(2X,.)-



Spectral Resolution

e Consider a monochromatic line with
wavenumebr o,: the interferogram is

1 (x)—(1)=1, cos(4rzo ,X)

e The Fourier integral, limited to +X,, .., IS:

S'(c)=1, Txcos(47mox)cos(47mx)dx =

- Xmax

S'(c)=1,x

0" "Mmax

sin 4z (o — o, )X
472(0 -0, )Xmax

e This is an approximation of the real S(oc)
which would be a delta function centered

In o, : In place of a delta, we get a sinc,
with a half-width approx. 1.23/(2x

max

max) -



Intensity [MJy/sr]
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W av ele| Working with continuous radiation, low
2 spectral resolution is not a real problem:

T with a maximum displacement of the
moving mirror of 1 cm we get a

FIRA resolution of about 0.5 cm* (15 GHz),
perfect to describe the blackbody curve.
Working with spectral lines, one would
have to increase the displacement.

1m is surely feasable.

5 10 15 20
o (cm-1) wavenumber (= 1/A(cm))



Beamsplitter problems

e What we get Is the input spectrum times the
efficiency of the beamsplitter.

e If the latter goes to zero, we cannot retrieve
the spectrum.

e S0 we need good beamplitters, ideally with
n=0.25, independent on frequency.



. mesmoest  LE DEamsplitter
beamsplitter is a
dielectric slab, with
refaction index n and
thickness t.

e Due to multiple
reflections inside the t rt2
slab, the transmitted s 342
and reflected fields r2t [
can be computed as rot2

the sum of an infinite rt2

number of
components with
decreasing amplitude
(a converging series) 5
and increasing phase L

delay. r2t2 N
o =4mdcosé' o

E = E_(—r cos 27rott + rt? cos(2zoct + 8 )+ r’t? cos(27zoct + 26 ) +

+rt° COS(Zﬂ'OCt + 35)+ From this, the efficiency rt(c) is computed



Polyethylene

th e b e a.m S p I i tte r Terephthalate

(mylar or melinex)
n=1.7

e The efficiency Is a
periodic function
with zeros at

eum

wavenumbers
m
m — '
nd cos @ .

e Whatever
thickness and
refraction index
you select, this iIs
not efficient at low
frequencies. Q/
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Linear Polarizers

= Linear polarizers can be used as high efficiency
achromatic beamsplitters at long wavelengths.

A linear polarizer is an optical device transmitting
only the projection of the E field of the EM wave
parallel to a given direction, which is called the
principal axis of the polarlzer

e Unpolarized radiation (where the E field direction In
the wavefront is random) is transformed into
linearly polarized radiation (where the E field
direction is constant) when crossing a polarizer.
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Linear Polarizers

e The transmitted field E’ can
be computed projecting the
Incoming field E along the
Principal AXis:

E... =E,cosg+E sing

3

Eout, R

)4

E.=E,,, =(E, cosg+E, sing)cos g X
E =By = (E cosg+E, sm¢)sm¢

. The component of the mcomlng field orthogonal to
the PA Is either absorbed or reflected, depending
on the perticular polarizer used.

e Note that
I'=|E] =|E

par

2 2
=|E|"cos® @ =1cos’ 8 (Malus law)

e SO0, for 6=45° incidence, half of the intensity is
transmitted (and half is reflected or absorbed).



At long wavelengths metallic wire grids
act as ideal polarizers:

Radiation with E parallel to the wires
induces a current in the wires, so the
polarizer acts as a metallic mirror:
radiation is fully reflected and is not
transmitted.

Radiation with E orthogonal to the
wires cannot induce a current in the . . . .
wires, so it is transmitted. Principal axis

Radiation at a generic angle from the
wires is partially transmitted
(orthogonal component) and partially
reflected (parallel component).

If the spacing of the wires a and their
diameter d are much less than the
wavelength, the wire grid is very close
to an ideal polarizer, with its principal
axis orthogonal to the wires.

Wire grid polarizers can be used as
iIdeal beamsplitters for radiation at
45° wrt the wires: half of the intensity
Is transmitted, and half is reflected,
without any wavelength dependance.

Wire grids can be machined easily
using a lathe and tungsten wire, which
Is available in long coills.

Principal axis
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In the Martin-Puplett -
configuration, radiation is Martin Puplett

prepared by the first

polarizer, then is split by the  |Nterferometer
Sﬁcor%d,dand IS recombined by

the third.

There are two sources. The
beam from source 1’ is
reflected one time more than
the beam from source 1.

For each metallic reflection

there is a 180° phase change

of the electric field, so the @¢—4,
detector will measure the S,
difference in spectral

brightness between source 1

and source 1'.

The instrument becomes a
zero instrument, comparing
the brightness of two sources
(see later).

In the case of FIRAS one
source was the sky, the other
one was an internal
blackbody.




Martin Puplett Interferometer

e Two Input ports

and two output

ports. 0s, ) e

e Uses two

unpolarized

sources, and two

detectors 34

sensitive to the

power.

e Let’s study the
operation
following the YDet
beams.




Martin Puplett Interferometer

e The input polarizer
A reflects radiation
from source S;. and
transmits radiation
from S,

e Assume that the
polarizer wires are
horizontal (main S,
axis of the polarizer
vertical)

e The beam at
position 3 has a
vertical component
from S; and a
horizontal
component from S;.




Martin Puplett Interferometer

e The input polarizer
A reflects radiation
from source S;. and
transmits radiation
from S,

e Assume that the
polarizer wires are
horizontal (main
axis of the polarizer
vertical)

e The beam at
position 3 has a
vertical component
from S; and a
horizontal
component from S;.




Martin Puplett Interferometer

e The wires of the
beamsplitter polarizer
B are oriented to be
seen by incoming
radiation at 45° from
the drawing plane.

e In this way, B reflects
a fraction of the

\ >
vertical component 7 A
from S; and a fraction ' I
of the horizontal
component from S;. . $

e SO0 beam 4 will be %:b'

polarized at 45° and
will consist of equal \/Det
contributions from c
both S; e da S;.






Martin Puplett Interferometer

e |In addition, B
transmits a fraction
of the vertical
component from S;
and a fraction of the
horizontal
polarization from S;..

e SO0 beam 4’ is
polarized at 45° and
consists of equal
contributions from
both S; and S;.







Martin Puplett Interferometer

e The roof mirror CD
reflects beam 4 into
beam 6 back to the
beamsplitter B.

e A roof mirrror is
used In place of a
normal mirror B
because It rotates A
the polarization
plane by 90°.

e In this way beam 6,
which had been
reflected by B, now
IS transmitted
towards the
detectors.




A roof mirror
rotates the
polarization
plane by 90¢°.




Martin Puplett Interferometer

e In the same way
the roof mirror
C’D’ reflects beam
4’ back towards
the beamsplitter
(as 6')

e The polarization

nlane Is rotated

oy 90°, so that
pbeam 6’, which
nad been ( ;
transmitted (as

4) now is YDt

reflected towards

the detectors.




Martin Puplett Interferometer

= The output polarizer G
has wires parallel to the
drwaing plane.

e The rays coming from the
beamsplitter, which are at
45°, have both horizontal
and vertical components
(coming from both
sources) so they
contribute to both the
beams towards the @
detectors (both
transmitted and reflected) 2

e In this way both detectors
receive radiation from
both sources, which
passed through both the
arms of the
Interferometer. UDct.

Ry
S




Martin Puplett Interferometer

e The fundamental

difference is that s, AN

radiation from source Sy £ o L
underwent 4 reflections, N e N e
while radiation from S; 5 = AN jeid—oe=
underwent only 3 & e’ 7|
reflections. Since each 3 . 3
reflection produces a 180° S A
phase shift, the 9 Det
INstrument measures the \/Det

diffence between
Interferograms produced

by S;.and S4



Quantitative treatment: uses Jones Calculus

 Jonex matrices are used to describe linearly
polarized radiation (Jones 1941)

* The Interaction of the E field of the EM wave with
an optical component is described by a 2x2 matrix:

(EX,OUTJZ[JM JIE]
Ey,OUT ‘]21 ‘]22 Ey,IN
« They work only for fully polarized radiation. For

partially polarized radiation one can use Muller
calculus (loosing any phase information).



E f|e|d If E Is the amplitude of the electric field of the EMW,
It Is represented as in the following examples:

 Linear polarization E 1
aligned along x axis 0

 Linear polarization E 0
aligned along y axis 1

e -45° from X axis

Circular polarization E (1
e Circu 1zati —
(right) V2 (i

e Circular polarization — .
defy) " NOAX

. E (1
e 45° from X axis S
V2 @ ( 1 j



Reference system

e Comoving with
the light beam : vyt

Mirrors 7

e |deal single mirror,
orthogonal to xz plane:

e |deal roof mirror, orthogonal
to xz plane:
RM =

/(

mirror

1 0

o




[m

Linear polarizers I
Transmission : 1 0
Polarizer with horizontal
principal axis: 0
Transmission : 0 0) E, N
Polarizer with vertical ’
principal axis: 0 1

Transmission : , _
Polarizer with principal P (1 :( CoS“¢@  COS@SIn go]

g;z:g at angle ¢ from x C0S @ siN @ sin? o

with principal axis at

Reflection : Polarizer 5 ( ( sin® @ —COS @ SIn gp)
\P)=
angle ¢ from x axis

cospsing  —cos® @



Delay

 Introduced by an optical path difference
d0=4mncX : this Is common for both
polarizations, so



* The two sources
S;and S’ , are
described by Jones
vectors

e beam 3, after the
Input polarizer
(with horizontal
principal axis), IS




neam 4 (reflected .
0y the a—
peamsplitter) and
peam 4’
(transmitted by the
beamsplitter) will
be:

1
S,=P (7/4)S, :%

| 1 1
S, :Pt(ﬂ-/zl')SBZ%




 Since roof mirrors
are represented by
unity matrix, we o4

have also 5, N
+ B
5. =5, = L[5
2\ A +B,
. . -B
S
2| A -B, )72

e S IS transmitted by the beamsplitter, while S;’ is
reflected, so

11 1) 11 1)
S, =R (z/4)S,+ R/ S, =71\ [Ss+5| |5



0 1(1 1 1( 1 1) .
Sy = Rr/ S, +R@rI S, = | | e+ L[S,
¢ SO ! ' )

s -1 (Ax(e':rl) B (e";—l) jT
A (e -1)+B, (e +1)

 After the interaction with the
output beamsplitter the beams to

the detectors are
10 1 B 10 _1
S, = P(0)S, = 2(Ax(e +>O ,(e )]

S, = P.(0)S _ 2 °
9 r( ) S_E[Ax(em—l)—By(em—l—l)]




 Now we can compute the power on the detectors:
l=E,E,+EE, —

' +B; B;
=%[Af(1+ c0sd) + B’ (1-cosd)] = A ; Ay ; Y cosS
2 + BZ BZ
:%[Af(l—coséﬂ B; (1+c0s5)] = A > _ A~ > Y c0so

« Both detectors measure a constant intensity (equal to
half of the sum of the intensities from the two
sources), plus a modulated intensity (modulated by
the optical path difference), whose amplitude is the
difference of the spectra from the two sources.

e The interferogram is zero If the two sources have
the same spectrum.



‘._ Maowvable
Elack
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Input

Black I

Body }
|
]

Ly (X) = C_. [SSKY (G)_ S ReF (6)]” (U){l"' COS [4770X]}d6

lea (X)=C : [SCAL (G)_ S ReF (G )]I’t (0){1+ COS [4775X]}d o

0




e To measure a few K
blackbody, you need a .z,
cryogenic reference
blackbody, with
variable temperature. R
Otherwise you do not e
null the signal.

e Practical design of a
Blackbody cavity: see
e.g. Quinn T.J., Martin |
J.E., (1985), Phil. S R T
Trans. R. Soc. Lond., - e

port for shutter- %
\ supports linking radiator
and shield to 77 K reservoir

liquid-nitrogen reservoir
(T7K)

calorimeter (5 K)

upper aperture (6 K) \

radiation trap (6 K)

A316, 85+ Who made a operating mechanism
radiometric »
measurement of the

Boltzmann constant s

(precise to 5 significant et T ety e
digits 1) |

cight on black body)

40 em




FIRAS

The FIRAS guys were able to change the temperature of
the internal blackbody until the interferograms were flat
Zero.

This Is a null measurement, which is much more
sensitive than an absolute one: (one can boost the gain
without saturating !).

This means that the difference between the spectrum of
the sky and the spectrum of a blackbody is zero, I.e. the
spectrum of the sky is a blackbody with the same
temperature as the internal reference blackbody.

This also means that the internal blackbody is a real
blackbody: it is unlikely that the sky can have the same
deviation from the Planck law as the source built in the
lab.
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FIRAS data with 400G errorbars
2.725 K Blackbody
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Isotropic expansion
or contraction:

For every observer :
r = physical distance

¥ = comoving distance

a(t) = scale factor

FRW metric: the most general
homogenous isotropic metric

(ds)* = c?dt? —a’(t)

1/k? = curvature of sp

MW

1

ry () = 7 a)

- 2

ry (1) = zpat)

3

rs(t) = zza(t)

2 J ~(7d0) —(xsinodo)

If we want to know how the universe expands, we need to
Integrate the Einstein Field Equations

Curvature Tensor
(derived from the
metric of the universe)

G=-

872G

C4

T

Stress-energy tensor
(describes the energy
content of the universe)




Evolution of the scale factor

a(t) Is the solution of the Friedmann equation, which is found from
Einstein’s field equations for a homogeneous isotropic medium, and

can be rewritten:
( ,jz Radiation Matter Curvature Cosm. constant
CAINVEY

a B B _
Q2" +Q,,a°+Q,,a°+Q, |
a

The solution a(t) depends on the different kinds of energy densities
relevant at the considered epoch. To integrate,zwe need the Qs:

Q _ IOOi . 3H

oi ’ /Oc o
Do 87zG

The very first result is that the universe cannot be static: a= a(t).
From observations we know that the universe expands today, so a(t)
IS growing today.
To say more on the previous and future behaviour of the scale factor
we need to estimate the cosmological parameters €2 and H,.

Cosmology recently entered in a “precision” phase, were the
cosmological parameters have been estimated with good precision.

Precision measurements of the CMB played a key role in this
process.




Radiation Phase

From Friedmann equation is evident that at early epochs (a small)
the expansion is driven by radiation:

.\ 2
(ij “H2 {02 +0,,a%+0,a°+Q, | ~HXQ. a"
a

Note that the expansion rate a/a tends to infinity at the beginning
(near the Big Bang), and then decreases with time.

In this phase the solution a (t) can be found analytically:

a2

7: Ho QRot — a(t):{z QRO }1/2 (Hot)ll2

We know H, from Hubble’s law. Qg has contributions from CMB
photons, but also from all other relativistic particles present at early
epochs. So the extrapolation using only the energy density of the
CMB would not be precise.




—4 | The radiation phase continues until the energy

IORO CMB /c’
eq ~ 2000 y rough
= Dol

<

Pr =P roa density of radiation becomes comparable to
the energy density of non relativistic matter.
IO Mo Q mo /0 co

log a..(1) log a(t)

Note: at the end of the radiation phase the temperature T=T.,,g/a was still > 10> K

log p(t)
/OMO eq
~4x107°
eq very
The universe was still ionized and opaque.



Matter Phase

* When the energy of non.relativistic matter becomes
dominant

2
3)
(5) =H2 {02 +Qa%+Q,a2+Q, | ~HXQ,a"

* In this phase the solution a (t) can be found analytically:

—d

a 2/3
: e :Ho’\/Qmo(t_to) — a(t):(g\/QMoHo(t_to)_l_aglzj

3
a(t) ||
’[2/3 From this equation we can estimate how
/ long it took to go from a=10- (end of
tl/ radiation phase) to a=10-3

(recombination).

The result is 380000 years.

H t This number is important for the following.




<\ 2 <\ 2
(Ej ~ Hozngoa_4 (Ej ~ H(JZQMoa_4
a

tY=132./0O 1/2Ht/2 2/3
0= 120 7 ) ‘a(t){gmrlo(t—towai’”j

Distance between
TWo positions

At the very beginning, the physical distance
between two positions r(t)=ya(t) increased

. at a rate larger than the speed of light.
\’ Afterwards, the expansion rate decreased.
l i j’ time
The result is the presence of
causal horizons in the Universe




Expansion vs Horizon

Distance travelled
by light since the
big bang r(t)=ct

E—

Distance between
two observers

r(t)=yx,at)

At this time the two observers do At this time the time
not see eachother: they are two observers see
separated by a causal horizon. eachother



Horizons at recombination

Distance travelled
by light since the
big bang r(t)=ct

Distance between
two observers

—TO=x,a(t)

A generic time t,

Conversely, at any given time, there is a physical separation time
between observers which marks the causal horizon: observers more
distant than this separation did not have enough time to exchange

light signals. They are causally disconnected.




Horizons at recombination

Distance travelled
by light since the

big bang r(t)=ct Distance between

two observers
—T(O=7,a(t)

Distance between two
observers entering the
horizon at t

r(t)=7;.a()

A generic time t,

Observers more distant than this separation did not have enough time
time to exchange light signals. They are causally disconnected.
Observers closer than this separation have been in causal contact.




Horizon

e The physical phenomena happening within
the causal horizon ar different from the
phenomena at scales outside the horizon.

* Forces are transmitted at most at the speed
of light, so phenomena outside the causal
horizon are frozen until they enter the
horizon.

e \We should be able to see the effects of
causal horizons, impressed in the image of
the CMB.



Horizons

o At recombination (t=380000 years), only regions of the
Universe closer than 380000 light years have had the
possibility (enough time) to interact.

e That length, as seen from a distance of the
order of ¢c/H, = 14 Glyrs, has an angular
size of about 1 degree.

117 \

|
1° 10°

14 000 000 000 ly

e They might be very different, since they could not
Interact during all the previous history of the Universe,
from the Big Bang to recombination !

 However, measurements show that this iIs not the case.
« CMB anisotropy measurements.



Anisotropy means that i
brightness is a function of the Measuring

anisotropy

observed direction.

Large brightness variations
would be evident in a map.

However, since its discovery,
it was evident that the CMB is
a very isotropic background.

At a few mm of wavelength,
the brightness of the sky is
dominated by the CMB, and is
Isotropic to at least 1 part
over 100.

Only if we remove the
average brightness and
increase the contrast of the
image, we start to see
structures.

But this requires special
experimental configurations,
removing a large background
an enhancing small
fluctuations.




Measuring anisotropy

e A way to remove the
common-mode signal
IS to alternate on the wobbling
detector two mirror
contiguous regions of
the sky, and measure
the AC signal
removing the DC
sighal electronically.

e A small AC signal
synchronous to the
modulation can be
extracted from
detector noise using a
demodulation
technique (a lock-in
amplifier).

detector

Out



L ock-In &

Using a
modulation/demodulation
technique has 3 purposes:

Remove the common wobbling
mode signal (instrumental mirror
and atmospheric emission
— to first order)

Remove noise at
frequencies different from
the modulation frequency

Produce a signal
proportional to the
Difference of Brightness
between the two observed
regions.

detector

Out

I:)A = AQERI|B T (1 tatm)Batmosph +tatm B (A)
I:)B = AQER|B instr T (1 tatm)Batmosph +tatm B (B)
AP = AQERt, B, (A) - B,(B)]

instr



Lock-In

4 Signal from detector

Sa
S
;‘TjOffset due to common-mode emission t
>

4 Reference signal from modulator (wobbling mirror)
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In ref. 0

Sout = <S(t)R(t)> = %<SA X1> +%<SB X _1> =4[S, —Ss]
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Lock-In
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In ref. 0

In presence of noise :

Sow = ([S®+n()R()) =

<SA><1>+ %<SB ><—1>+%<n(t)x1>+%<n(t)x—1>:
IS, -S|+ n’

L
2
L
2

n’ Is a zero-average noise: due to the lack of correlation
between n(t) and R(t), n’ tends to O If the average period is
long enough (many modulation cycles).

To quantify, we need to specify the noise better.

The combination multiplier + integrator is equivalent to a
band-pass filter centered on the reference frequency.



Let’s consider for simplicity a sine-wave signal :

S(t) =V, cos(wt+¢,)

The signal from the sky will be at the same frequency of the
reference, while the noise will have contributions at all
frequencies.

The reference also can be a sine-wave at the same frequency as
the signal:

R(t) = cos(wyt + @)
At the output of the multiplier we get

V. () =V, cog(@, + @)t +(@, + @) +V, cog(@, —a)t+(@, — @)

If the low-pass filter has a cut-off frequency lower than
f.=1/T<2n/», the sum frequency will be cut, while the difference
frequency will pass with an amplitude

V[ Hla —e| cosz, - )

Where H is the tranfer function of the low-pass filter.




‘H (-, + a)R)‘

The sky signal is exactly at the same
frequency as the reference, with no
phase delay, so it is transferred to
the output as it Is.

Noise contributes to all frequencies,
but only those within the bandpass
Aw=2(2nf,)=4r/T will contribute to
the output signal.

In case of wide-band noise the
Improvement in S/N is very
significant !

‘H (a)s _a)R)‘




IT w,, is the spectral density of the noise (in V4/Hz) :

I\lin — \/WV 1’-max ’ I\|out :\W_V

oT
SIN,,
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Early measurements of CMB anisotropy

Using the beam-switching technigue described above, you can
Integrate for some time on one couple of directions, then change
directions and integrate again, then change ... until you get a
statistical sample of the sky, consisting typically in a few tens to a
few hundreds sky temperature differences AT; .

This Is enough to estimate the rms fluctuation of the temperature
(brightness) of the sky, extracting it from the noise.

These experiments started immediately after the discovery of the
CMB (Penzias and Wilson stated in the discovery paper of 1965
that it was isotropic to 10%)... and were very frustrating !

For more than two decades a few groups of pioneers of the CMB
Improved their isotropometers, obtaining increasingly stringent
upper limits for the anisotropy of the CMB, down to a level

£<1O
T

at scales of the order of the horizon. So regions which have never
been in causal contact before produce the same CMB brightness, with
outstanding precision. How is this possible ? This is the paradox of
horizons.



