

Pulsars and gravitational waves: 1 An introduction

George Hobbs CSIRO Astronomy and Space Science george.hobbs@csiro.au

Let's start at the beginning

08:35:20.61

Animation: Michael Kramer

-45:10:34.87

- Formation of the beam
- Propagation through the magnetosphere
- Propagation through the interstellar medium
- Propagation through the interplanetary medium
- The pulsar's astrometric, pulse and orbital parameters
- ...
- gravitational waves passing the Earth and/or the pulsar

Lecture series

- Lecture 1: overview (a bit of everything)
- Lecture 2: the pulsar timing method. How gravitational waves influence pulsar observations
- Lecture 3: Expected gravitational wave sources. Current data sets
- Lecture 4: Techniques to search for gravitational waves
- Lecture 5: a bit of fun and the future!

Purpose of this lecture series

- Provide an overview of pulsars
- Provide an overview of gravitational waves
- Show how, in theory, pulsar observations can be used to detect gravitational waves
- Describe issues with the current data sets
- Describe unsolved problems
- Provide enough information that you can process pulsar observations and develop tools to search for gravitational waves
- Understand the terminology used in the pulsar/gravitational wave literature
- Know what work has already been done
- Know what are the current problems that need to be solved
- Understand the future possibilities for this project

Purpose of lecture 1

- Provide an overview of pulsars, gravitational waves, pulsar timing and current results
- This is a general, colloquium-style talk to provide a basic overview
- A lot more details on all topics during the next four talks

- 1 goal: you should understand the phrase "pulsar timing residual"
- Please ask lots of questions during the talk

Structure of talk

- Part 1: Introduction to pulsar timing
- Part 2: Uncorrelated timing residuals
- Part 3: Monopolar correlations
- Part 4: Dipolar correlations
- Part 5: Quadrupolar correlations
- (Use data from the Jodrell Bank Observatory and Parkes Pulsar Timing Array project)

Pulsar timing

Slide from D. Champion

Pulsar timing (details in Edwards, Hobbs & Manchester, MNRAS, 2006)

Example timing residuals Jodrell Bank Observatory data

Hobbs et al. (2010), MNRAS

CSIRO. Gravitational wave detection

A few simulations

GW background Spin-down irregularities

Clock noise

• With one pulsar you cannot (normally) tell what unmodelled physical effect is causing the residuals

Spin-down irregularities

Terrestrial time standard irregularities

CSIRO. Gravitational wave detection

Errors in the planetary ephemerides - e.g. error in the mass of Jupiter

What if gravitational waves exist?

Part 2: Uncorrelated residuals

- Part 1: Introduction to pulsar timing
- Part 2: Uncorrelated timing residuals
- Part 3: Monopolar correlations
- Part 4: Dipolar correlations
- Part 5: Quadrupolar correlations

Describing the spin-down of pulsars

- Modelling the pulsar spin-down usually requires the pulse frequency, F and its first derivative, F1.
- Residuals shown here have F2 (and higher derivatives) = 0.

Example timing residuals Jodrell Bank Observatory data

Hobbs et al. (2010), MNRAS

CSIRO. Gravitational wave detection

How do you work out what is causing these residuals?

Difficulties when categorising timing residuals

Difficulties when categorising timing noise: depends on data span

- PSR B1818-04
- Any simple classification scheme would change with data span.
- Most previous largescale analyses of timing noise used ~3 yr of data.

Typical pulsar timing residuals over many decades (Jodrell Bank Observatory data)

- Hobbs et al. 2010, MNRAS
- Studied 366 pulsars with data spanning 10->40 years
- Found quasi-periodicities
- Need long datasets to see the oscillations clearly!
- The irregularities in the pulsar spin are not completely "random"!
- Could this be caused by planets, free-precession, asteroid belts, ...???

An interlude: B1931+24

- PSR B1931+24 has been reported to undergo "extreme nulling" events (Kramer et al. 2006)
- Normal pulsar for 5 to 10 days
- Switches off for up to 35 days
- The pulsar spin-down rate changes by ~50% between the on and off states (pulsar spinning down faster when "on")

 (Note: PSR J1832+0029 has recently been discovered - "on" for approx 1 year and then "off" for approx 2 years)

Discovery of a two state process in many pulsars

- Lyne, Hobbs, Kramer, Stairs, Stappers, Science 24 June 2010
- We show that timing behaviour often results from typically two different spin-down rates.
- Show correlated pulse shape variations => magnetospheric origin
- In theory can use the observed pulse shape to correct the "pulsar clock"

Why is this important?

- Conclusion: (some/all) pulsar timing noise is magnetospheric in origin – get correlated spin down changes with pulse profile. Timing noise is a two-state process
- "Mankind's best clocks all need corrections, perhaps for the effects of changing temperature, atmospheric pressure, humidity or local magnetic field. Here, we have found a potential means of correcting an astrophysical clock". – Andrew Lyne
- => reduce the time taken to detect gravitational waves!

Unanswered questions:

- Why do the pulsars have this two state process?
- Are glitches and timing noise linked?
- Do all pulsars show this two state timing noise? Do millisecond pulsars exhibit different timing noise?
- How fast can the pulsar switch between the two modes?

Part 3: Correlated timing residuals: monopole

- Part 1: Introduction to pulsar timing
- Part 2: Uncorrelated timing residuals
- Part 3: Monopolar correlations
- Part 4: Dipolar correlations
- Part 5: Quadrupolar correlations
- Now using observations of millisecond pulsars obtained as part of the Parkes Pulsar Timing Array project ... timing precisions of <100ns (equiv 30m) are obtained for some pulsars.

Time standards

- Pulsar observations referred to a realisation of terrestrial time: TT(TAI)
- Post-corrected time standard TT(BIPM2010) can be used

It's hard

•

• Must deal with:

- Different data spans for different pulsars
- Different timing model fits being applied
- Different sampling for different pulsars (and all sampling is irregular)
- Variable error bars (between pulsars and within a given pulsar data set)
- Unexplained pulsar timing irregularities
- Other phenomena that may cause correlated signals (i.e., a gravitational wave background signal has a correlated component)

This is also important for gravitational wave detection

• Consider two pulsar data sets.

• Have different data spans

• Fit for the pulse frequency and its derivative

• Add in realistic amounts of noise

CSIRO

• Add in some unexplained timing irregularities

Important notes

- We can never recover the linear and quadratic irregularities in a time standard (or in, e.g., a gravitational wave signal)
- For data sets with different data spans, it is not possible to use a simple "weighted-average" method to determine the ensemble pulsar time standard (the pulsar timing fits significantly affect the timing residuals)

Technique: (Hobbs et al., in preparation)

• Define clock function to be simple Fourier expansion:

$$f(t) = \sum A_k \cos(k\omega_0 t) + B_k \sin(k\omega_0 t)$$

(note: can use other functional forms if needed)

- Carry out a standard least-squares fit of pulsar timing model parameters + f(t) as usual, except:
- simultaneously fit to multiple pulsars
- use measurement of the covariance in the residuals for a given pulsar as part of the least-squares-fit fit (to deal with timing noise)

$$\vec{P}_{est} = (M^T C^{-1} M)^{-1} M^T C^{-1} \vec{R}$$
 Timing residuals
Pulsar timing model

Covariance matrix of the / residuals

Now using same technique to search for gravitational waves

CSIRO. Gravitational wave detection

Testing: can we recover TAI-TT(BIPM2010) x 10?

• Simulate 10x expected TAI-TT(BIPM2010) in real pulsar data

5μ**s**

Final result (no simulations) EPT-TT(TAI) and TT(BIPM2010)-TT(TAI)

Summary of part 3:

- Can recover recent deviations between TT(BIPM2010) and TT(TAI) using pulsar observations
- Have significant deviation from TT (BIPM2010) prior to the year 1999
- Can not (currently) distinguish between errors in TT(BIPM2010) and errors in the time transfer from the Parkes observatory
- New data sets should significantly improve the results
- New pulsar discoveries and improved observing techniques are significantly improving the precision with which pulsars can be timed.
- Pulsars may be able to provide confirmation/addition to Earth-based timestandards on timescales of years and decades.

Unanswered questions:

- Can we prove that the deviation from TT prior to 1999 is caused by errors in TT(BIPM2010)?
- Can we use the pulsar timescale to improve our timing precision?
- Can we include pulsar data in the creation of TT(BIPM2010) to improve terrestrial time.
- Can any other affects mimic clock errors?

Part 4: Correlated timing residuals: dipole

- Part 1: Introduction to pulsar timing
- Part 2: Uncorrelated timing residuals
- Part 3: Monopolar correlations
- Part 4: Dipolar correlations (very short section!)
- Part 5: Quadrupolar correlations

Measuring planetary masses

- Use International Pulsar Timing Array data from Parkes, Effelsberg, Nancay and Arecibo.
- Champion et al. 2010, ApJ.
- A planetary mass error will lead to incorrect determination of the Solar System barycentre => correlated pulsar timing residuals
- Can fit to multiple pulsars simultaneously to search for such a signal

Measuring planetary mass

- Champion, Hobbs, Manchester et al. (2010), ApJ, 720, 201
- Use data from Parkes, Arecibo, Effelsberg and Nancay

M _{Sun}	Best Published	This work
Mercury	1.66013(7)x10 ⁻⁷	1.660(2)x10 ⁻⁷
Venus	2.4478686(4)x10 ⁻⁶	2.44782(10)x10 ⁻⁶
Mars	3.227151(9)x10 ⁻⁷	3.2277(8)x10 ⁻⁷
Jupiter*	9.54791915(11)x10 ⁻⁴	9.547916(4)x10 ⁻⁴
Saturn	2.85885670(8)x10 ⁻⁴	2.858858(14)x10 ⁻⁴

Summary of part 4

- Can measure planetary masses with pulsar timing
- New data sets will significantly improve the precision

Unanswered questions:

- Can we identify an unknown TNO? (Have a summer student this year trying to rule out "nemesis" – a postulated large mass in our solar system)
- Can we realistically simulate the effects of perturbing a planetary mass?
- Can we search for unknown planets/asteroids around the pulsars?

Part 5: Correlated timing residuals: quadrupole

- Part 1: Introduction to pulsar timing
- Part 2: Uncorrelated timing residuals
- Part 3: Monopolar correlations
- Part 4: Dipolar correlations
- Part 5: Quadrupolar correlations

Part 2: Details of the detection method. Single GW sources

Application to 3C66B: Jenet et al. (2004)

Orbital Motion in the Radio Galaxy 3C 66B: Evidence for a Supermassive Black Hole Binary

Hiroshi Sudou,1* Satoru Iguchi,2 Yasuhiro Murata,3 Yoshiaki Taniguchi1

magazine

- $M_t = 5.4 \times 10^{10} M_{solar}$
- Mass ratio = .1
- $M_{chirp} = 1.3 \ 10^{10} \ M_{solar}$
- Orbital period = $1.05 \pm .03$ yrs
- Distance = 85 Mpc (H=75 km/s/Mpc)
- h ~ $M_{chirp}^{5/3} \Omega^{2/3}$ / D ~ 10⁻¹²
- R = h/ Ω = 2 μ s

Application to 3C66B: Jenet et al. (2004)

From Jenet, Lommen, Larson, & Wen, ApJ, 2004

CSIRO. Gravitational wave detection

Application to 3C66B

From Jenet, Lommen, Larson, & Wen, ApJ, 2004

Data from Kaspi et al. 1994

CSIRO. Gravitational wave detection

The sensitivity of the Parkes pulsar timing array to individual sources: Yardley et al. (2010)

- Non-detection => skyaveraged constraint on the merger rate of nearby (z < 0.6) black hole binaries in the early phases of coalescence with a chirp mass of 10¹⁰ solar mass of less than one merger every 7yr.
- Much more sensitive if you know the direction of sky the GWs are likely to come from

A stochastic background of GW sources

Expect backgrounds from:

- 1. Supermassive black-hole binaries
- 2. Relic GWs from the early universe

Details in Lecture 3

3. Cosmic strings

The stochastic background is made up of a sum of a large number of plane gravitational waves.

$$h_{\mu\nu} = \operatorname{Re}\left[\sum_{j} A_{\mu\nu_{j}} e^{i\vec{k_{j}}\cdot\vec{x} - i\omega_{j}t}\right]$$

Detecting the stochastic background

$$R(t,\hat{k}) = -\int_{0}^{t} \sum_{s=0}^{N-1} \mathcal{H}(\hat{k},\hat{\eta_{s}})^{ij} (h_{ij}(t_{e},x_{e},\hat{\eta_{s}}) - h_{ij}(t_{e} - d,x_{p},\hat{\eta_{s}})) dt_{e}$$

This is the same for all pulsars.

This depends on the pulsar.

• The induced timing residuals for different pulsars will be correlated

The expected correlation function

Simulated data 0 0.5 0 Correlation 0 - 0.5 7 50 100 150 Angular separation (deg)

Detection/limits on the background

Conclusion

- Pulsars can be used to study many different aspects of astronomy and astrophysics
- The pulsar timing array projects are providing high quality data sets on large numbers of pulsars
- We have a better understanding of pulsar timing irregularities
- We have found errors in the terrestrial time standards
- The International Pulsar Timing Array has the best published mass of the Jovian system
- We have techniques developed and ready that should be able to detect GWs.
- However, we need some confidence that merging supermassive black holes actually exist!

Next lectures will detail the pulsar timing method and the gravitational wave experiment in detail!

Unanswered questions

- Timing irregularities:
- Why do the pulsars have this two state process?
- Are glitches and timing noise linked?
- Do all pulsars show this two state timing noise? Do millisecond pulsars exhibit different timing noise?
- How fast can the pulsar switch between the two modes?
- Planets:
- Can we identify an unknown TNO?
- Can we realistically simulate the effects of perturbing a planetary mass?
- Can we search for unknown planets/ asteroids around the pulsars?

• Clocks:

- Can we prove that the deviation from TT prior to 1999 is caused by errors in TT (BIPM2010)?
- Can we use the pulsar timescale to improve our timing precision?
- Can we include pulsar data in the creation of TT(BIPM2010) to improve terrestrial time.
- Can anything else mimic clock errors?
- Gravitational waves/galaxies
- What do our upper bounds on GW emission imply for e.g. galaxy merger rates, the rate of expansion in the inflationary era and cosmic strings?
- Can we find a black hole binary system with ~1 pc separation?
- Can we undertake a coherent search to identify single source of GWs?
- Can we find burst GW sources?

03:32:59.368 +54:35:43.57

08:35:20.61 -45:10:34.87

05:34:31.973 +22:00:52.06

04:37:15.815 -47:15:08.624

The Crab supernova

An ancient Chinese Astronomer in AD1054

So what happened?

http://www.spacetelescope.org/videos/html/heic0609b.html

